#include #include #include
#include "Math.hpp" #include "Jet.hpp" #include "SimpleJet.hpp" #include "Gear.hpp" #include "Hook.hpp" #include "Launchbar.hpp" #include "Atmosphere.hpp" #include "PropEngine.hpp" #include "Propeller.hpp" #include "PistonEngine.hpp" #include "TurbineEngine.hpp" #include "Rotor.hpp" #include "Rotorpart.hpp" #include "Rotorblade.hpp" #include "FGFDM.hpp" namespace yasim { // Some conversion factors static const float KTS2MPS = 0.514444444444; static const float FT2M = 0.3048; static const float DEG2RAD = 0.0174532925199; static const float RPM2RAD = 0.10471975512; static const float LBS2N = 4.44822; static const float LBS2KG = 0.45359237; static const float KG2LBS = 2.2046225; static const float CM2GALS = 264.172037284; static const float HP2W = 745.700; static const float INHG2PA = 3386.389; static const float K2DEGF = 1.8; static const float K2DEGFOFFSET = -459.4; static const float CIN2CM = 1.6387064e-5; static const float YASIM_PI = 3.14159265358979323846; static const float NM2FTLB = (1/(LBS2N*FT2M)); // Stubs, so that this can be compiled without the FlightGear // binary. What's the best way to handle this? // float fgGetFloat(char* name, float def) { return 0; } // void fgSetFloat(char* name, float val) {} FGFDM::FGFDM() { _vehicle_radius = 0.0f; _nextEngine = 0; // Map /controls/flight/elevator to the approach elevator control. This // should probably be settable, but there are very few aircraft // who trim their approaches using things other than elevator. _airplane.setElevatorControl(parseAxis("/controls/flight/elevator-trim")); // FIXME: read seed from somewhere? int seed = 0; _turb = new Turbulence(10, seed); } FGFDM::~FGFDM() { int i; for(i=0; i<_axes.size(); i++) { AxisRec* a = (AxisRec*)_axes.get(i); delete[] a->name; delete a; } for(i=0; i<_thrusters.size(); i++) { EngRec* er = (EngRec*)_thrusters.get(i); delete[] er->prefix; delete er->eng; delete er; } for(i=0; i<_weights.size(); i++) { WeightRec* wr = (WeightRec*)_weights.get(i); delete[] wr->prop; delete wr; } for(i=0; i<_controlProps.size(); i++) delete (PropOut*)_controlProps.get(i); } void FGFDM::iterate(float dt) { getExternalInput(dt); _airplane.iterate(dt); // Do fuel stuff (FIXME: should stash SGPropertyNode objects here) char buf[256]; for(int i=0; i<_airplane.numThrusters(); i++) { Thruster* t = _airplane.getThruster(i); sprintf(buf, "/engines/engine[%d]/out-of-fuel", i); t->setFuelState(!fgGetBool(buf)); sprintf(buf, "/engines/engine[%d]/fuel-consumed-lbs", i); double consumed = fgGetDouble(buf) + dt * KG2LBS * t->getFuelFlow(); fgSetDouble(buf, consumed); } for(int i=0; i<_airplane.numTanks(); i++) { sprintf(buf, "/consumables/fuel/tank[%d]/level-lbs", i); _airplane.setFuel(i, LBS2KG * fgGetFloat(buf)); } _airplane.calcFuelWeights(); setOutputProperties(dt); } Airplane* FGFDM::getAirplane() { return &_airplane; } void FGFDM::init() { // Allows the user to start with something other than full fuel _airplane.setFuelFraction(fgGetFloat("/sim/fuel-fraction", 1)); // Read out the resulting fuel state char buf[256]; for(int i=0; i<_airplane.numTanks(); i++) { sprintf(buf, "/consumables/fuel/tank[%d]/level-lbs", i); fgSetDouble(buf, _airplane.getFuel(i) * KG2LBS); double density = _airplane.getFuelDensity(i); sprintf(buf, "/consumables/fuel/tank[%d]/density-ppg", i); fgSetDouble(buf, density * (KG2LBS/CM2GALS)); sprintf(buf, "/consumables/fuel/tank[%d]/level-gal_us", i); fgSetDouble(buf, _airplane.getFuel(i) * CM2GALS / density); sprintf(buf, "/consumables/fuel/tank[%d]/capacity-gal_us", i); fgSetDouble(buf, CM2GALS * _airplane.getTankCapacity(i)/density); } // This has a nasty habit of being false at startup. That's not // good. fgSetBool("/controls/gear/gear-down", true); _airplane.getModel()->setTurbulence(_turb); } // Not the worlds safest parser. But it's short & sweet. void FGFDM::startElement(const char* name, const XMLAttributes &atts) { XMLAttributes* a = (XMLAttributes*)&atts; float v[3]; char buf[64]; if(eq(name, "airplane")) { _airplane.setWeight(attrf(a, "mass") * LBS2KG); } else if(eq(name, "approach")) { float spd = attrf(a, "speed") * KTS2MPS; float alt = attrf(a, "alt", 0) * FT2M; float aoa = attrf(a, "aoa", 0) * DEG2RAD; _airplane.setApproach(spd, alt, aoa, attrf(a, "fuel", 0.2)); _cruiseCurr = false; } else if(eq(name, "cruise")) { float spd = attrf(a, "speed") * KTS2MPS; float alt = attrf(a, "alt") * FT2M; _airplane.setCruise(spd, alt, attrf(a, "fuel", 0.5)); _cruiseCurr = true; } else if(eq(name, "solve-weight")) { int idx = attri(a, "idx"); float wgt = attrf(a, "weight") * LBS2KG; _airplane.addSolutionWeight(!_cruiseCurr, idx, wgt); } else if(eq(name, "cockpit")) { v[0] = attrf(a, "x"); v[1] = attrf(a, "y"); v[2] = attrf(a, "z"); _airplane.setPilotPos(v); } else if(eq(name, "rotor")) { _airplane.addRotor(parseRotor(a, name)); } else if(eq(name, "wing")) { _airplane.setWing(parseWing(a, name)); } else if(eq(name, "hstab")) { _airplane.setTail(parseWing(a, name)); } else if(eq(name, "vstab") || eq(name, "mstab")) { _airplane.addVStab(parseWing(a, name)); } else if(eq(name, "piston-engine")) { parsePistonEngine(a); } else if(eq(name, "turbine-engine")) { parseTurbineEngine(a); } else if(eq(name, "propeller")) { parsePropeller(a); } else if(eq(name, "thruster")) { SimpleJet* j = new SimpleJet(); _currObj = j; v[0] = attrf(a, "x"); v[1] = attrf(a, "y"); v[2] = attrf(a, "z"); j->setPosition(v); _airplane.addThruster(j, 0, v); v[0] = attrf(a, "vx"); v[1] = attrf(a, "vy"); v[2] = attrf(a, "vz"); j->setDirection(v); j->setThrust(attrf(a, "thrust") * LBS2N); } else if(eq(name, "jet")) { Jet* j = new Jet(); _currObj = j; v[0] = attrf(a, "x"); v[1] = attrf(a, "y"); v[2] = attrf(a, "z"); float mass = attrf(a, "mass") * LBS2KG; j->setMaxThrust(attrf(a, "thrust") * LBS2N, attrf(a, "afterburner", 0) * LBS2N); j->setVectorAngle(attrf(a, "rotate", 0) * DEG2RAD); j->setReverseThrust(attrf(a, "reverse", 0.2)); float n1min = attrf(a, "n1-idle", 55); float n1max = attrf(a, "n1-max", 102); float n2min = attrf(a, "n2-idle", 73); float n2max = attrf(a, "n2-max", 103); j->setRPMs(n1min, n1max, n2min, n2max); j->setTSFC(attrf(a, "tsfc", 0.8)); if(a->hasAttribute("egt")) j->setEGT(attrf(a, "egt")); if(a->hasAttribute("epr")) j->setEPR(attrf(a, "epr")); if(a->hasAttribute("exhaust-speed")) j->setVMax(attrf(a, "exhaust-speed") * KTS2MPS); j->setPosition(v); _airplane.addThruster(j, mass, v); sprintf(buf, "/engines/engine[%d]", _nextEngine++); EngRec* er = new EngRec(); er->eng = j; er->prefix = dup(buf); _thrusters.add(er); } else if(eq(name, "gear")) { Gear* g = new Gear(); _currObj = g; v[0] = attrf(a, "x"); v[1] = attrf(a, "y"); v[2] = attrf(a, "z"); g->setPosition(v); float nrm = Math::mag3(v); if (_vehicle_radius < nrm) _vehicle_radius = nrm; v[0] = 0; v[1] = 0; v[2] = attrf(a, "compression", 1); g->setCompression(v); g->setBrake(attrf(a, "skid", 0)); g->setStaticFriction(attrf(a, "sfric", 0.8)); g->setDynamicFriction(attrf(a, "dfric", 0.7)); g->setSpring(attrf(a, "spring", 1)); g->setDamping(attrf(a, "damp", 1)); _airplane.addGear(g); } else if(eq(name, "hook")) { Hook* h = new Hook(); _currObj = h; v[0] = attrf(a, "x"); v[1] = attrf(a, "y"); v[2] = attrf(a, "z"); h->setPosition(v); float length = attrf(a, "length", 1.0); h->setLength(length); float nrm = length+Math::mag3(v); if (_vehicle_radius < nrm) _vehicle_radius = nrm; h->setDownAngle(attrf(a, "down-angle", 70) * DEG2RAD); h->setUpAngle(attrf(a, "up-angle", 0) * DEG2RAD); _airplane.addHook(h); } else if(eq(name, "launchbar")) { Launchbar* l = new Launchbar(); _currObj = l; v[0] = attrf(a, "x"); v[1] = attrf(a, "y"); v[2] = attrf(a, "z"); l->setLaunchbarMount(v); v[0] = attrf(a, "holdback-x", v[0]); v[1] = attrf(a, "holdback-y", v[1]); v[2] = attrf(a, "holdback-z", v[2]); l->setHoldbackMount(v); float length = attrf(a, "length", 1.0); l->setLength(length); l->setDownAngle(attrf(a, "down-angle", 30) * DEG2RAD); l->setUpAngle(attrf(a, "up-angle", -30) * DEG2RAD); _airplane.addLaunchbar(l); } else if(eq(name, "fuselage")) { float b[3]; v[0] = attrf(a, "ax"); v[1] = attrf(a, "ay"); v[2] = attrf(a, "az"); b[0] = attrf(a, "bx"); b[1] = attrf(a, "by"); b[2] = attrf(a, "bz"); float taper = attrf(a, "taper", 1); float mid = attrf(a, "midpoint", 0.5); _airplane.addFuselage(v, b, attrf(a, "width"), taper, mid); } else if(eq(name, "tank")) { v[0] = attrf(a, "x"); v[1] = attrf(a, "y"); v[2] = attrf(a, "z"); float density = 6.0; // gasoline, in lbs/gal if(a->hasAttribute("jet")) density = 6.72; density *= LBS2KG*CM2GALS; _airplane.addTank(v, attrf(a, "capacity") * LBS2KG, density); } else if(eq(name, "ballast")) { v[0] = attrf(a, "x"); v[1] = attrf(a, "y"); v[2] = attrf(a, "z"); _airplane.addBallast(v, attrf(a, "mass") * LBS2KG); } else if(eq(name, "weight")) { parseWeight(a); } else if(eq(name, "stall")) { Wing* w = (Wing*)_currObj; w->setStall(attrf(a, "aoa") * DEG2RAD); w->setStallWidth(attrf(a, "width", 2) * DEG2RAD); w->setStallPeak(attrf(a, "peak", 1.5)); } else if(eq(name, "flap0")) { ((Wing*)_currObj)->setFlap0(attrf(a, "start"), attrf(a, "end"), attrf(a, "lift"), attrf(a, "drag")); } else if(eq(name, "flap1")) { ((Wing*)_currObj)->setFlap1(attrf(a, "start"), attrf(a, "end"), attrf(a, "lift"), attrf(a, "drag")); } else if(eq(name, "slat")) { ((Wing*)_currObj)->setSlat(attrf(a, "start"), attrf(a, "end"), attrf(a, "aoa"), attrf(a, "drag")); } else if(eq(name, "spoiler")) { ((Wing*)_currObj)->setSpoiler(attrf(a, "start"), attrf(a, "end"), attrf(a, "lift"), attrf(a, "drag")); /* } else if(eq(name, "collective")) { ((Rotor*)_currObj)->setcollective(attrf(a, "min"), attrf(a, "max")); } else if(eq(name, "cyclic")) { ((Rotor*)_currObj)->setcyclic(attrf(a, "ail"), attrf(a, "ele")); */ } else if(eq(name, "actionpt")) { v[0] = attrf(a, "x"); v[1] = attrf(a, "y"); v[2] = attrf(a, "z"); ((Thruster*)_currObj)->setPosition(v); } else if(eq(name, "dir")) { v[0] = attrf(a, "x"); v[1] = attrf(a, "y"); v[2] = attrf(a, "z"); ((Thruster*)_currObj)->setDirection(v); } else if(eq(name, "control-setting")) { // A cruise or approach control setting const char* axis = a->getValue("axis"); float value = attrf(a, "value", 0); if(_cruiseCurr) _airplane.addCruiseControl(parseAxis(axis), value); else _airplane.addApproachControl(parseAxis(axis), value); } else if(eq(name, "control-input")) { // A mapping of input property to a control int axis = parseAxis(a->getValue("axis")); int control = parseOutput(a->getValue("control")); int opt = 0; opt |= a->hasAttribute("split") ? ControlMap::OPT_SPLIT : 0; opt |= a->hasAttribute("invert") ? ControlMap::OPT_INVERT : 0; opt |= a->hasAttribute("square") ? ControlMap::OPT_SQUARE : 0; ControlMap* cm = _airplane.getControlMap(); if(a->hasAttribute("src0")) { cm->addMapping(axis, control, _currObj, opt, attrf(a, "src0"), attrf(a, "src1"), attrf(a, "dst0"), attrf(a, "dst1")); } else { cm->addMapping(axis, control, _currObj, opt); } } else if(eq(name, "control-output")) { // A property output for a control on the current object ControlMap* cm = _airplane.getControlMap(); int type = parseOutput(a->getValue("control")); int handle = cm->getOutputHandle(_currObj, type); PropOut* p = new PropOut(); p->prop = fgGetNode(a->getValue("prop"), true); p->handle = handle; p->type = type; p->left = !(a->hasAttribute("side") && eq("right", a->getValue("side"))); p->min = attrf(a, "min", cm->rangeMin(type)); p->max = attrf(a, "max", cm->rangeMax(type)); _controlProps.add(p); } else if(eq(name, "control-speed")) { ControlMap* cm = _airplane.getControlMap(); int type = parseOutput(a->getValue("control")); int handle = cm->getOutputHandle(_currObj, type); float time = attrf(a, "transition-time", 0); cm->setTransitionTime(handle, time); } else { SG_LOG(SG_FLIGHT,SG_ALERT,"Unexpected tag '" << name << "' found in YASim aircraft description"); exit(1); } } void FGFDM::getExternalInput(float dt) { char buf[256]; _turb->setMagnitude(fgGetFloat("/environment/turbulence/magnitude-norm")); _turb->update(dt, fgGetFloat("/environment/turbulence/rate-hz")); // The control axes ControlMap* cm = _airplane.getControlMap(); cm->reset(); int i; for(i=0; i<_axes.size(); i++) { AxisRec* a = (AxisRec*)_axes.get(i); float val = fgGetFloat(a->name, 0); cm->setInput(a->handle, val); } cm->applyControls(dt); // Weights for(i=0; i<_weights.size(); i++) { WeightRec* wr = (WeightRec*)_weights.get(i); _airplane.setWeight(wr->handle, LBS2KG * fgGetFloat(wr->prop)); } for(i=0; i<_thrusters.size(); i++) { EngRec* er = (EngRec*)_thrusters.get(i); Thruster* t = er->eng; if(t->getPropEngine()) { PropEngine* p = t->getPropEngine(); sprintf(buf, "%s/rpm", er->prefix); p->setOmega(fgGetFloat(buf, 500) * RPM2RAD); } } } // Linearly "seeks" a property by the specified fraction of the way to // the target value. Used to emulate "slowly changing" output values. static void moveprop(SGPropertyNode* node, const char* prop, float target, float frac) { float val = node->getFloatValue(prop); if(frac > 1) frac = 1; if(frac < 0) frac = 0; val += (target - val) * frac; node->setFloatValue(prop, val); } void FGFDM::setOutputProperties(float dt) { // char buf[256]; int i; float grossWgt = _airplane.getModel()->getBody()->getTotalMass() * KG2LBS; fgSetFloat("/yasim/gross-weight-lbs", grossWgt); ControlMap* cm = _airplane.getControlMap(); for(i=0; i<_controlProps.size(); i++) { PropOut* p = (PropOut*)_controlProps.get(i); float val = (p->left ? cm->getOutput(p->handle) : cm->getOutputR(p->handle)); float rmin = cm->rangeMin(p->type); float rmax = cm->rangeMax(p->type); float frac = (val - rmin) / (rmax - rmin); val = frac*(p->max - p->min) + p->min; p->prop->setFloatValue(val); } for(i=0; i<_airplane.getNumRotors(); i++) { Rotor*r=(Rotor*)_airplane.getRotor(i); int j = 0; float f; char b[256]; while(j = r->getValueforFGSet(j, b, &f)) if(b[0]) fgSetFloat(b,f); for(j=0; j < r->numRotorparts(); j++) { Rotorpart* s = (Rotorpart*)r->getRotorpart(j); char *b; int k; for(k=0; k<2; k++) { b=s->getAlphaoutput(k); if(b[0]) fgSetFloat(b, s->getAlpha(k)); } } for(j=0; j < r->numRotorblades(); j++) { Rotorblade* s = (Rotorblade*)r->getRotorblade(j); char *b; int k; for (k=0; k<2; k++) { b = s->getAlphaoutput(k); if(b[0]) fgSetFloat(b, s->getAlpha(k)); } } } float fuelDensity = _airplane.getFuelDensity(0); // HACK for(i=0; i<_thrusters.size(); i++) { EngRec* er = (EngRec*)_thrusters.get(i); Thruster* t = er->eng; SGPropertyNode * node = fgGetNode("engines/engine", i, true); // Set: running, cranking, prop-thrust, max-hp, power-pct node->setBoolValue("running", t->isRunning()); node->setBoolValue("cranking", t->isCranking()); float tmp[3]; t->getThrust(tmp); float lbs = Math::mag3(tmp) * (KG2LBS/9.8); node->setFloatValue("prop-thrust", lbs); // Deprecated name node->setFloatValue("thrust-lbs", lbs); node->setFloatValue("fuel-flow-gph", (t->getFuelFlow()/fuelDensity) * 3600 * CM2GALS); if(t->getPropEngine()) { PropEngine* p = t->getPropEngine(); node->setFloatValue("rpm", p->getOmega() * (1/RPM2RAD)); node->setFloatValue("torque-ftlb", p->getEngine()->getTorque() * NM2FTLB); if(p->getEngine()->isPistonEngine()) { PistonEngine* pe = p->getEngine()->isPistonEngine(); node->setFloatValue("mp-osi", pe->getMP() * (1/INHG2PA)); node->setFloatValue("mp-inhg", pe->getMP() * (1/INHG2PA)); node->setFloatValue("egt-degf", pe->getEGT() * K2DEGF + K2DEGFOFFSET); } else if(p->getEngine()->isTurbineEngine()) { TurbineEngine* te = p->getEngine()->isTurbineEngine(); node->setFloatValue("n2", te->getN2()); } } if(t->getJet()) { Jet* j = t->getJet(); node->setFloatValue("n1", j->getN1()); node->setFloatValue("n2", j->getN2()); node->setFloatValue("epr", j->getEPR()); node->setFloatValue("egr-degf", j->getEGT() * K2DEGF + K2DEGFOFFSET); // These are "unmodeled" values that are still needed for // many cockpits. Tie them all to the N1 speed, but // normalize the numbers to the range [0:1] so the // cockpit code can scale them to the right values. float pnorm = j->getPerfNorm(); moveprop(node, "oilp-norm", pnorm, dt/3); // 3s seek time moveprop(node, "oilt-norm", pnorm, dt/30); // 30s moveprop(node, "itt-norm", pnorm, dt/1); // 1s } } } Wing* FGFDM::parseWing(XMLAttributes* a, const char* type) { Wing* w = new Wing(); float defDihed = 0; if(eq(type, "vstab")) defDihed = 90; else w->setMirror(true); float pos[3]; pos[0] = attrf(a, "x"); pos[1] = attrf(a, "y"); pos[2] = attrf(a, "z"); w->setBase(pos); w->setLength(attrf(a, "length")); w->setChord(attrf(a, "chord")); w->setSweep(attrf(a, "sweep", 0) * DEG2RAD); w->setTaper(attrf(a, "taper", 1)); w->setDihedral(attrf(a, "dihedral", defDihed) * DEG2RAD); w->setCamber(attrf(a, "camber", 0)); w->setIncidence(attrf(a, "incidence", 0) * DEG2RAD); w->setTwist(attrf(a, "twist", 0) * DEG2RAD); // The 70% is a magic number that sorta kinda seems to match known // throttle settings to approach speed. w->setInducedDrag(0.7*attrf(a, "idrag", 1)); float effect = attrf(a, "effectiveness", 1); w->setDragScale(w->getDragScale()*effect); _currObj = w; return w; } Rotor* FGFDM::parseRotor(XMLAttributes* a, const char* type) { Rotor* w = new Rotor(); // float defDihed = 0; float pos[3]; pos[0] = attrf(a, "x"); pos[1] = attrf(a, "y"); pos[2] = attrf(a, "z"); w->setBase(pos); float normal[3]; normal[0] = attrf(a, "nx"); normal[1] = attrf(a, "ny"); normal[2] = attrf(a, "nz"); w->setNormal(normal); float forward[3]; forward[0] = attrf(a, "fx"); forward[1] = attrf(a, "fy"); forward[2] = attrf(a, "fz"); w->setForward(forward); w->setMaxCyclicail(attrf(a, "maxcyclicail", 7.6)); w->setMaxCyclicele(attrf(a, "maxcyclicele", 4.94)); w->setMinCyclicail(attrf(a, "mincyclicail", -7.6)); w->setMinCyclicele(attrf(a, "mincyclicele", -4.94)); w->setMaxCollective(attrf(a, "maxcollective", 15.8)); w->setMinCollective(attrf(a, "mincollective", -0.2)); w->setDiameter(attrf(a, "diameter", 10.2)); w->setWeightPerBlade(attrf(a, "weightperblade", 44)); w->setNumberOfBlades(attrf(a, "numblades", 4)); w->setRelBladeCenter(attrf(a, "relbladecenter", 0.7)); w->setDynamic(attrf(a, "dynamic", 0.7)); w->setDelta3(attrf(a, "delta3", 0)); w->setDelta(attrf(a, "delta", 0)); w->setTranslift(attrf(a, "translift", 0.05)); w->setC2(attrf(a, "dragfactor", 1)); w->setStepspersecond(attrf(a, "stepspersecond", 120)); w->setRPM(attrf(a, "rpm", 424)); w->setRelLenHinge(attrf(a, "rellenflaphinge", 0.07)); w->setAlpha0((attrf(a, "flap0", -5))*YASIM_PI/180); w->setAlphamin((attrf(a, "flapmin", -15))/180*YASIM_PI); w->setAlphamax((attrf(a, "flapmax", 15))*YASIM_PI/180); w->setAlpha0factor(attrf(a, "flap0factor", 1)); w->setTeeterdamp(attrf(a,"teeterdamp",.0001)); w->setMaxteeterdamp(attrf(a,"maxteeterdamp",1000)); w->setRelLenTeeterHinge(attrf(a,"rellenteeterhinge",0.01)); void setAlphamin(float f); void setAlphamax(float f); void setAlpha0factor(float f); if(attrb(a,"ccw")) w->setCcw(1); if(a->hasAttribute("name")) w->setName(a->getValue("name") ); if(a->hasAttribute("alphaout0")) w->setAlphaoutput(0,a->getValue("alphaout0") ); if(a->hasAttribute("alphaout1")) w->setAlphaoutput(1,a->getValue("alphaout1") ); if(a->hasAttribute("alphaout2")) w->setAlphaoutput(2,a->getValue("alphaout2") ); if(a->hasAttribute("alphaout3")) w->setAlphaoutput(3,a->getValue("alphaout3") ); if(a->hasAttribute("coneout")) w->setAlphaoutput(4,a->getValue("coneout") ); if(a->hasAttribute("yawout")) w->setAlphaoutput(5,a->getValue("yawout") ); if(a->hasAttribute("rollout")) w->setAlphaoutput(6,a->getValue("rollout") ); w->setPitchA(attrf(a, "pitch_a", 10)); w->setPitchB(attrf(a, "pitch_b", 10)); w->setForceAtPitchA(attrf(a, "forceatpitch_a", 3000)); w->setPowerAtPitch0(attrf(a, "poweratpitch_0", 300)); w->setPowerAtPitchB(attrf(a, "poweratpitch_b", 3000)); if(attrb(a,"notorque")) w->setNotorque(1); if(attrb(a,"simblades")) w->setSimBlades(1); _currObj = w; return w; } void FGFDM::parsePistonEngine(XMLAttributes* a) { float engP = attrf(a, "eng-power") * HP2W; float engS = attrf(a, "eng-rpm") * RPM2RAD; PistonEngine* eng = new PistonEngine(engP, engS); if(a->hasAttribute("displacement")) eng->setDisplacement(attrf(a, "displacement") * CIN2CM); if(a->hasAttribute("compression")) eng->setCompression(attrf(a, "compression")); if(a->hasAttribute("turbo-mul")) { float mul = attrf(a, "turbo-mul"); float mp = attrf(a, "wastegate-mp", 1e6) * INHG2PA; eng->setTurboParams(mul, mp); } ((PropEngine*)_currObj)->setEngine(eng); } void FGFDM::parseTurbineEngine(XMLAttributes* a) { float power = attrf(a, "eng-power") * HP2W; float omega = attrf(a, "eng-rpm") * RPM2RAD; float alt = attrf(a, "alt") * FT2M; float flatRating = attrf(a, "flat-rating") * HP2W; TurbineEngine* eng = new TurbineEngine(power, omega, alt, flatRating); if(a->hasAttribute("n2-low-idle")) eng->setN2Range(attrf(a, "n2-low-idle"), attrf(a, "n2-high-idle"), attrf(a, "n2-max")); // Nasty units conversion: lbs/hr per hp -> kg/s per watt if(a->hasAttribute("bsfc")) eng->setFuelConsumption(attrf(a, "bsfc") * (LBS2KG/(3600*HP2W))); ((PropEngine*)_currObj)->setEngine(eng); } void FGFDM::parsePropeller(XMLAttributes* a) { // Legacy Handling for the old engines syntax: PistonEngine* eng = 0; if(a->hasAttribute("eng-power")) { SG_LOG(SG_FLIGHT,SG_ALERT, "WARNING: " << "Legacy engine definition in YASim configuration file. " << "Please fix."); float engP = attrf(a, "eng-power") * HP2W; float engS = attrf(a, "eng-rpm") * RPM2RAD; eng = new PistonEngine(engP, engS); if(a->hasAttribute("displacement")) eng->setDisplacement(attrf(a, "displacement") * CIN2CM); if(a->hasAttribute("compression")) eng->setCompression(attrf(a, "compression")); if(a->hasAttribute("turbo-mul")) { float mul = attrf(a, "turbo-mul"); float mp = attrf(a, "wastegate-mp", 1e6) * INHG2PA; eng->setTurboParams(mul, mp); } } // Now parse the actual propeller definition: float cg[3]; cg[0] = attrf(a, "x"); cg[1] = attrf(a, "y"); cg[2] = attrf(a, "z"); float mass = attrf(a, "mass") * LBS2KG; float moment = attrf(a, "moment"); float radius = attrf(a, "radius"); float speed = attrf(a, "cruise-speed") * KTS2MPS; float omega = attrf(a, "cruise-rpm") * RPM2RAD; float power = attrf(a, "cruise-power") * HP2W; float rho = Atmosphere::getStdDensity(attrf(a, "cruise-alt") * FT2M); Propeller* prop = new Propeller(radius, speed, omega, rho, power); PropEngine* thruster = new PropEngine(prop, eng, moment); _airplane.addThruster(thruster, mass, cg); if(a->hasAttribute("takeoff-power")) { float power0 = attrf(a, "takeoff-power") * HP2W; float omega0 = attrf(a, "takeoff-rpm") * RPM2RAD; prop->setTakeoff(omega0, power0); } if(a->hasAttribute("max-rpm")) { float max = attrf(a, "max-rpm") * RPM2RAD; float min = attrf(a, "min-rpm") * RPM2RAD; thruster->setVariableProp(min, max); } if(attrb(a, "contra")) thruster->setContraPair(true); if(a->hasAttribute("manual-pitch")) { prop->setManualPitch(); } thruster->setGearRatio(attrf(a, "gear-ratio", 1)); char buf[64]; sprintf(buf, "/engines/engine[%d]", _nextEngine++); EngRec* er = new EngRec(); er->eng = thruster; er->prefix = dup(buf); _thrusters.add(er); _currObj = thruster; } // Turns a string axis name into an integer for use by the // ControlMap. Creates a new axis if this one hasn't been defined // yet. int FGFDM::parseAxis(const char* name) { int i; for(i=0; i<_axes.size(); i++) { AxisRec* a = (AxisRec*)_axes.get(i); if(eq(a->name, name)) return a->handle; } // Not there, make a new one. AxisRec* a = new AxisRec(); a->name = dup(name); fgGetNode( a->name, true ); // make sure the property name exists a->handle = _airplane.getControlMap()->newInput(); _axes.add(a); return a->handle; } int FGFDM::parseOutput(const char* name) { if(eq(name, "THROTTLE")) return ControlMap::THROTTLE; if(eq(name, "MIXTURE")) return ControlMap::MIXTURE; if(eq(name, "CONDLEVER")) return ControlMap::CONDLEVER; if(eq(name, "STARTER")) return ControlMap::STARTER; if(eq(name, "MAGNETOS")) return ControlMap::MAGNETOS; if(eq(name, "ADVANCE")) return ControlMap::ADVANCE; if(eq(name, "REHEAT")) return ControlMap::REHEAT; if(eq(name, "BOOST")) return ControlMap::BOOST; if(eq(name, "VECTOR")) return ControlMap::VECTOR; if(eq(name, "PROP")) return ControlMap::PROP; if(eq(name, "BRAKE")) return ControlMap::BRAKE; if(eq(name, "STEER")) return ControlMap::STEER; if(eq(name, "EXTEND")) return ControlMap::EXTEND; if(eq(name, "HEXTEND")) return ControlMap::HEXTEND; if(eq(name, "LEXTEND")) return ControlMap::LEXTEND; if(eq(name, "INCIDENCE")) return ControlMap::INCIDENCE; if(eq(name, "FLAP0")) return ControlMap::FLAP0; if(eq(name, "FLAP1")) return ControlMap::FLAP1; if(eq(name, "SLAT")) return ControlMap::SLAT; if(eq(name, "SPOILER")) return ControlMap::SPOILER; if(eq(name, "CASTERING")) return ControlMap::CASTERING; if(eq(name, "PROPPITCH")) return ControlMap::PROPPITCH; if(eq(name, "PROPFEATHER")) return ControlMap::PROPFEATHER; if(eq(name, "COLLECTIVE")) return ControlMap::COLLECTIVE; if(eq(name, "CYCLICAIL")) return ControlMap::CYCLICAIL; if(eq(name, "CYCLICELE")) return ControlMap::CYCLICELE; if(eq(name, "ROTORENGINEON")) return ControlMap::ROTORENGINEON; if(eq(name, "REVERSE_THRUST")) return ControlMap::REVERSE_THRUST; SG_LOG(SG_FLIGHT,SG_ALERT,"Unrecognized control type '" << name << "' in YASim aircraft description."); exit(1); } void FGFDM::parseWeight(XMLAttributes* a) { WeightRec* wr = new WeightRec(); float v[3]; v[0] = attrf(a, "x"); v[1] = attrf(a, "y"); v[2] = attrf(a, "z"); wr->prop = dup(a->getValue("mass-prop")); wr->size = attrf(a, "size", 0); wr->handle = _airplane.addWeight(v, wr->size); _weights.add(wr); } bool FGFDM::eq(const char* a, const char* b) { // Figure it out for yourself. :) while(*a && *b && *a == *b) { a++; b++; } return !(*a || *b); } char* FGFDM::dup(const char* s) { int len=0; while(s[len++]); char* s2 = new char[len+1]; char* p = s2; while((*p++ = *s++)); s2[len] = 0; return s2; } int FGFDM::attri(XMLAttributes* atts, char* attr) { if(!atts->hasAttribute(attr)) { SG_LOG(SG_FLIGHT,SG_ALERT,"Missing '" << attr << "' in YASim aircraft description"); exit(1); } return attri(atts, attr, 0); } int FGFDM::attri(XMLAttributes* atts, char* attr, int def) { const char* val = atts->getValue(attr); if(val == 0) return def; else return atol(val); } float FGFDM::attrf(XMLAttributes* atts, char* attr) { if(!atts->hasAttribute(attr)) { SG_LOG(SG_FLIGHT,SG_ALERT,"Missing '" << attr << "' in YASim aircraft description"); exit(1); } return attrf(atts, attr, 0); } float FGFDM::attrf(XMLAttributes* atts, char* attr, float def) { const char* val = atts->getValue(attr); if(val == 0) return def; else return (float)atof(val); } // ACK: the dreaded ambiguous string boolean. Remind me to shoot Maik // when I have a chance. :). Unless you have a parser that can check // symbol constants (we don't), this kind of coding is just a Bad // Idea. This implementation, for example, silently returns a boolean // falsehood for values of "1", "yes", "True", and "TRUE". Which is // especially annoying preexisting boolean attributes in the same // parser want to see "1" and will choke on a "true"... // // Unfortunately, this usage creeped into existing configuration files // while I wasn't active, and it's going to be hard to remove. Issue // a warning to nag people into changing their ways for now... bool FGFDM::attrb(XMLAttributes* atts, char* attr) { const char* val = atts->getValue(attr); if(val == 0) return false; if(eq(val,"true")) { SG_LOG(SG_FLIGHT, SG_ALERT, "Warning: " << "deprecated 'true' boolean in YASim configuration file. " << "Use numeric booleans (attribute=\"1\") instead"); return true; } return attri(atts, attr, 0) ? true : false; } }; // namespace yasim