// vertical_speed_indicator.cxx - a regular VSI. // Written by David Megginson, started 2002. // // Last change by E. van den Berg, 17.02.1013 // // This file is in the Public Domain and comes with no warranty. #ifdef HAVE_CONFIG_H # include "config.h" #endif #include #include #include "vertical_speed_indicator.hxx" #include
#include
//** NOTE: do not change these values. If you change one of them the others need to be changed too */ //** these values calibrate the VSI at SL. */ #define Vol_casing 1.25e-4 //m3 #define A_orifice 7.853982e-9 //m2 #define Factor_cal 189.145628 //- using std::string; VerticalSpeedIndicator::VerticalSpeedIndicator ( SGPropertyNode *node ) : _casing_pressure_Pa(101325), _name(node->getStringValue("name", "vertical-speed-indicator")), _num(node->getIntValue("number", 0)), _static_pressure(node->getStringValue("static-pressure", "/systems/static/pressure-inhg")), _static_temperature(node->getStringValue("static-temperature", "/environment/temperature-degc")) { } VerticalSpeedIndicator::~VerticalSpeedIndicator () { } void VerticalSpeedIndicator::init () { string branch; branch = "/instrumentation/" + _name; SGPropertyNode *node = fgGetNode(branch.c_str(), _num, true ); _serviceable_node = node->getChild("serviceable", 0, true); _pressure_node = fgGetNode(_static_pressure.c_str(), true); _temperature_node = fgGetNode(_static_temperature.c_str(), true); _speed_fpm_node = node->getChild("indicated-speed-fpm", 0, true); _speed_mps_node = node->getChild("indicated-speed-mps", 0, true); _speed_kts_node = node->getChild("indicated-speed-kts", 0, true); _speed_up_node = fgGetNode("/sim/speed-up", true); reinit(); } void VerticalSpeedIndicator::reinit () { // Initialize at ambient conditions double casing_pressure_inHg = _pressure_node->getDoubleValue(); _casing_pressure_Pa = casing_pressure_inHg * SG_INHG_TO_PA; double casing_temperature_C = _temperature_node->getDoubleValue(); double casing_temperature_K = casing_temperature_C + 273.15; _casing_density_kgpm3 = _casing_pressure_Pa / (casing_temperature_K * SG_R_m2_p_s2_p_K); _casing_airmass_kg = _casing_density_kgpm3 * Vol_casing; _orifice_massflow_kgps = 0.0; } void VerticalSpeedIndicator::update (double dt) { if (_serviceable_node->getBoolValue()) { double pressure_inHg = _pressure_node->getDoubleValue() ; double pressure_Pa = pressure_inHg * SG_INHG_TO_PA; double speed_up = _speed_up_node->getDoubleValue(); double Fsign = 0.; double orifice_mach = 0.0; if( speed_up > 1 ) dt *= speed_up; // This is a thermodynamically correct model of a mechanical vertical speed indicator: // It represents an aneroid in a closed (constant volume) casing with the aneroid internal pressure = static pressure // The casing has an orifice to static pressure // the mass flow through the orifice is calculated using compressible aerodynamics (but adiabatic and of course a perfect gas) // using the pressure in the casing and static pressure // // sadly at very low flows (small VS) in conjunction with the fact discrete timesteps (dt) are used, a numerical instability is formed. // this is counteracted by setting the massflow 0 at very small pressure differentials // this causes a small funny jump of your VSI when passing through 0...cannot be helped! // // also note the calibration is only valid for 0ft, so at higher altitudes, the vertical speed is not correct, but would indicate as a real mechanical VSI. // Only use for conventional mechanical VSI-s. Dont use in an Air Data Computer. // // (...and it is supposed to lag!) _casing_airmass_kg = _casing_airmass_kg - _orifice_massflow_kgps * dt; double new_density_kgpm3 = _casing_airmass_kg / Vol_casing; _casing_pressure_Pa = _casing_pressure_Pa * pow(new_density_kgpm3 / _casing_density_kgpm3 , SG_gamma); double casing_temperature_K = _casing_pressure_Pa / (new_density_kgpm3 * SG_R_m2_p_s2_p_K); if( _casing_pressure_Pa - pressure_Pa > 0.0 ) { Fsign = 1.0; //outflow, pos VS } else { Fsign = -1.0; //inflow, neg VS } if( fabs(_casing_pressure_Pa - pressure_Pa) < 0.01 ) { orifice_mach = 0.0; } else { orifice_mach = sqrt(fabs (2.0*SG_cp_m2_p_s2_p_K / (SG_gamma * SG_R_m2_p_s2_p_K) * ( pow(pressure_Pa / _casing_pressure_Pa ,(SG_gamma-1)/SG_gamma ) -1 ) ) ); } _orifice_massflow_kgps = Fsign * _casing_pressure_Pa / sqrt(casing_temperature_K) * sqrt(SG_gamma/SG_R_m2_p_s2_p_K) * orifice_mach * pow(1+(SG_gamma-1)/2*orifice_mach*orifice_mach,-(SG_gamma+1)/(2*(SG_gamma-1))) * A_orifice; double vs_fpm = Fsign * sqrt( fabs( pressure_Pa - _casing_pressure_Pa ) ) * Factor_cal; double vs_kts = vs_fpm / 60 * SG_FPS_TO_KT; double vs_mps = vs_fpm / 60 * SG_FEET_TO_METER; _speed_fpm_node ->setDoubleValue(vs_fpm); _speed_kts_node ->setDoubleValue(vs_kts); _speed_mps_node ->setDoubleValue(vs_mps); _casing_density_kgpm3 = new_density_kgpm3; } } // end of vertical_speed_indicator.cxx