// views.cxx -- data structures and routines for managing and view // parameters. // // Written by Curtis Olson, started August 1997. // // Copyright (C) 1997 Curtis L. Olson - curt@flightgear.org // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. // // $Id$ #ifdef HAVE_CONFIG_H # include #endif #include // plib include #include #include #include #include #include #include #include #include #include "options.hxx" #include "views.hxx" // This is a record containing current view parameters for the current // aircraft position FGView pilot_view; // This is a record containing current view parameters for the current // view position FGView current_view; // Constructor FGView::FGView( void ) { } #define USE_FAST_VIEWROT #ifdef USE_FAST_VIEWROT // VIEW_ROT = LARC_TO_SSG * ( VIEWo * VIEW_OFFSET ) // This takes advantage of the fact that VIEWo and VIEW_OFFSET // only have entries in the upper 3x3 block // and that LARC_TO_SSG is just a shift of rows NHV inline static void fgMakeViewRot( sgMat4 dst, const sgMat4 m1, const sgMat4 m2 ) { for ( int j = 0 ; j < 3 ; j++ ) { dst[2][j] = m2[0][0] * m1[0][j] + m2[0][1] * m1[1][j] + m2[0][2] * m1[2][j]; dst[0][j] = m2[1][0] * m1[0][j] + m2[1][1] * m1[1][j] + m2[1][2] * m1[2][j]; dst[1][j] = m2[2][0] * m1[0][j] + m2[2][1] * m1[1][j] + m2[2][2] * m1[2][j]; } dst[0][3] = dst[1][3] = dst[2][3] = dst[3][0] = dst[3][1] = dst[3][2] = SG_ZERO; dst[3][3] = SG_ONE; } #endif // Initialize a view structure void FGView::Init( void ) { FG_LOG( FG_VIEW, FG_INFO, "Initializing View parameters" ); view_offset = 0.0; goal_view_offset = 0.0; sgSetVec3( pilot_offset, 0.0, 0.0, 0.0 ); winWidth = current_options.get_xsize(); winHeight = current_options.get_ysize(); if ( ! current_options.get_panel_status() ) { set_win_ratio( winHeight / winWidth ); } else { set_win_ratio( (winHeight*0.4232) / winWidth ); } #ifndef USE_FAST_VIEWROT // This never changes -- NHV LARC_TO_SSG[0][0] = 0.0; LARC_TO_SSG[0][1] = 1.0; LARC_TO_SSG[0][2] = -0.0; LARC_TO_SSG[0][3] = 0.0; LARC_TO_SSG[1][0] = 0.0; LARC_TO_SSG[1][1] = 0.0; LARC_TO_SSG[1][2] = 1.0; LARC_TO_SSG[1][3] = 0.0; LARC_TO_SSG[2][0] = 1.0; LARC_TO_SSG[2][1] = -0.0; LARC_TO_SSG[2][2] = 0.0; LARC_TO_SSG[2][3] = 0.0; LARC_TO_SSG[3][0] = 0.0; LARC_TO_SSG[3][1] = 0.0; LARC_TO_SSG[3][2] = 0.0; LARC_TO_SSG[3][3] = 1.0; #endif // USE_FAST_VIEWROT force_update_fov_math(); } #define USE_FAST_LOCAL #ifdef USE_FAST_LOCAL inline static void fgMakeLOCAL( sgMat4 dst, const double Theta, const double Phi, const double Psi) { SGfloat cosTheta = (SGfloat) cos(Theta); SGfloat sinTheta = (SGfloat) sin(Theta); SGfloat cosPhi = (SGfloat) cos(Phi); SGfloat sinPhi = (SGfloat) sin(Phi); SGfloat sinPsi = (SGfloat) sin(Psi) ; SGfloat cosPsi = (SGfloat) cos(Psi) ; dst[0][0] = cosPhi * cosTheta; dst[0][1] = sinPhi * cosPsi + cosPhi * -sinTheta * -sinPsi; dst[0][2] = sinPhi * sinPsi + cosPhi * -sinTheta * cosPsi; dst[0][3] = SG_ZERO; dst[1][0] = -sinPhi * cosTheta; dst[1][1] = cosPhi * cosPsi + -sinPhi * -sinTheta * -sinPsi; dst[1][2] = cosPhi * sinPsi + -sinPhi * -sinTheta * cosPsi; dst[1][3] = SG_ZERO ; dst[2][0] = sinTheta; dst[2][1] = cosTheta * -sinPsi; dst[2][2] = cosTheta * cosPsi; dst[2][3] = SG_ZERO; dst[3][0] = SG_ZERO; dst[3][1] = SG_ZERO; dst[3][2] = SG_ZERO; dst[3][3] = SG_ONE ; } #endif // Update the view volume, position, and orientation void FGView::UpdateViewParams( const FGInterface& f ) { UpdateViewMath(f); if ( ! current_options.get_panel_status() ) { xglViewport(0, 0 , (GLint)(winWidth), (GLint)(winHeight) ); } else { xglViewport(0, (GLint)((winHeight)*0.5768), (GLint)(winWidth), (GLint)((winHeight)*0.4232) ); } } // convert sgMat4 to MAT3 and print static void print_sgMat4( sgMat4 &in) { int i, j; for ( i = 0; i < 4; i++ ) { for ( j = 0; j < 4; j++ ) { printf("%10.4f ", in[i][j]); } cout << endl; } } // Update the view parameters void FGView::UpdateViewMath( const FGInterface& f ) { Point3D p; sgVec3 v0, minus_z, sgvec, forward; sgMat4 VIEWo, TMP; if ( update_fov ) { ssgSetFOV( current_options.get_fov(), current_options.get_fov() * win_ratio ); update_fov = false; } scenery.center = scenery.next_center; // printf("scenery center = %.2f %.2f %.2f\n", scenery.center.x, // scenery.center.y, scenery.center.z); // calculate the cartesion coords of the current lat/lon/0 elev p = Point3D( f.get_Longitude(), f.get_Lat_geocentric(), f.get_Sea_level_radius() * FEET_TO_METER ); cur_zero_elev = sgPolarToCart3d(p) - scenery.center; // calculate view position in current FG view coordinate system // p.lon & p.lat are already defined earlier, p.radius was set to // the sea level radius, so now we add in our altitude. if ( f.get_Altitude() * FEET_TO_METER > (scenery.cur_elev + 0.5 * METER_TO_FEET) ) { p.setz( p.radius() + f.get_Altitude() * FEET_TO_METER ); } else { p.setz( p.radius() + scenery.cur_elev + 0.5 * METER_TO_FEET ); } abs_view_pos = sgPolarToCart3d(p); view_pos = abs_view_pos - scenery.center; FG_LOG( FG_VIEW, FG_DEBUG, "Polar view pos = " << p ); FG_LOG( FG_VIEW, FG_DEBUG, "Absolute view pos = " << abs_view_pos ); FG_LOG( FG_VIEW, FG_DEBUG, "Relative view pos = " << view_pos ); // code to calculate LOCAL matrix calculated from Phi, Theta, and // Psi (roll, pitch, yaw) in case we aren't running LaRCsim as our // flight model #ifdef USE_FAST_LOCAL fgMakeLOCAL( LOCAL, f.get_Theta(), f.get_Phi(), -f.get_Psi() ); #else // USE_TEXT_BOOK_METHOD sgVec3 rollvec; sgSetVec3( rollvec, 0.0, 0.0, 1.0 ); sgMat4 PHI; // roll sgMakeRotMat4( PHI, f.get_Phi() * RAD_TO_DEG, rollvec ); sgVec3 pitchvec; sgSetVec3( pitchvec, 0.0, 1.0, 0.0 ); sgMat4 THETA; // pitch sgMakeRotMat4( THETA, f.get_Theta() * RAD_TO_DEG, pitchvec ); // ROT = PHI * THETA sgMat4 ROT; // sgMultMat4( ROT, PHI, THETA ); sgCopyMat4( ROT, PHI ); sgPostMultMat4( ROT, THETA ); sgVec3 yawvec; sgSetVec3( yawvec, 1.0, 0.0, 0.0 ); sgMat4 PSI; // pitch sgMakeRotMat4( PSI, -f.get_Psi() * RAD_TO_DEG, yawvec ); // LOCAL = ROT * PSI // sgMultMat4( LOCAL, ROT, PSI ); sgCopyMat4( LOCAL, ROT ); sgPostMultMat4( LOCAL, PSI ); #endif // YIKES // cout << "LOCAL matrix" << endl; // print_sgMat4( LOCAL ); sgMakeRotMat4( UP, f.get_Longitude() * RAD_TO_DEG, 0.0, -f.get_Latitude() * RAD_TO_DEG ); sgSetVec3( local_up, UP[0][0], UP[0][1], UP[0][2] ); // sgXformVec3( local_up, UP ); // cout << "Local Up = " << local_up[0] << "," << local_up[1] << "," // << local_up[2] << endl; // Alternative method to Derive local up vector based on // *geodetic* coordinates // alt_up = sgPolarToCart(FG_Longitude, FG_Latitude, 1.0); // printf( " Alt Up = (%.4f, %.4f, %.4f)\n", // alt_up.x, alt_up.y, alt_up.z); // VIEWo = LOCAL * UP // sgMultMat4( VIEWo, LOCAL, UP ); sgCopyMat4( VIEWo, LOCAL ); sgPostMultMat4( VIEWo, UP ); // cout << "VIEWo matrix" << endl; // print_sgMat4( VIEWo ); // generate the sg view up and forward vectors sgSetVec3( view_up, VIEWo[0][0], VIEWo[0][1], VIEWo[0][2] ); // cout << "view = " << view[0] << "," // << view[1] << "," << view[2] << endl; sgSetVec3( forward, VIEWo[2][0], VIEWo[2][1], VIEWo[2][2] ); // cout << "forward = " << forward[0] << "," // << forward[1] << "," << forward[2] << endl; // generate the pilot offset vector in world coordinates sgVec3 pilot_offset_world; sgSetVec3( pilot_offset_world, pilot_offset[2], pilot_offset[1], -pilot_offset[0] ); sgXformVec3( pilot_offset_world, pilot_offset_world, VIEWo ); // generate the view offset matrix sgMakeRotMat4( VIEW_OFFSET, view_offset * RAD_TO_DEG, view_up ); // cout << "VIEW_OFFSET matrix" << endl; // print_sgMat4( VIEW_OFFSET ); sgXformVec3( view_forward, forward, VIEW_OFFSET ); // cout << "view_forward = " << view_forward[0] << "," // << view_forward[1] << "," << view_forward[2] << endl; // VIEW_ROT = LARC_TO_SSG * ( VIEWo * VIEW_OFFSET ) #ifdef USE_FAST_VIEWROT fgMakeViewRot( VIEW_ROT, VIEW_OFFSET, VIEWo ); #else // sgMultMat4( VIEW_ROT, VIEW_OFFSET, VIEWo ); // sgPreMultMat4( VIEW_ROT, LARC_TO_SSG ); sgCopyMat4( VIEW_ROT, VIEWo ); sgPostMultMat4( VIEW_ROT, VIEW_OFFSET ); sgPreMultMat4( VIEW_ROT, LARC_TO_SSG ); #endif // cout << "VIEW_ROT matrix" << endl; // print_sgMat4( VIEW_ROT ); sgVec3 trans_vec; sgSetVec3( trans_vec, view_pos.x() + pilot_offset_world[0], view_pos.y() + pilot_offset_world[1], view_pos.z() + pilot_offset_world[2] ); // VIEW = VIEW_ROT * TRANS sgCopyMat4( VIEW, VIEW_ROT ); sgPostMultMat4ByTransMat4( VIEW, trans_vec ); //!!!!!!!!!!!!!!!!!!! // THIS IS THE EXPERIMENTAL VIEWING ANGLE SHIFTER // THE MAJORITY OF THE WORK IS DONE IN GUI.CXX // this in gui.cxx for now just testing extern float quat_mat[4][4]; sgPreMultMat4( VIEW, quat_mat); // !!!!!!!!!! testing // make a vector to the current view position sgSetVec3( v0, view_pos.x(), view_pos.y(), view_pos.z() ); // Given a vector pointing straight down (-Z), map into onto the // local plane representing "horizontal". This should give us the // local direction for moving "south". sgSetVec3( minus_z, 0.0, 0.0, -1.0 ); sgmap_vec_onto_cur_surface_plane(local_up, v0, minus_z, surface_south); sgNormalizeVec3(surface_south); // cout << "Surface direction directly south " << surface_south[0] << "," // << surface_south[1] << "," << surface_south[2] << endl; // now calculate the surface east vector #define USE_FAST_SURFACE_EAST #ifdef USE_FAST_SURFACE_EAST sgVec3 local_down; sgNegateVec3(local_down, local_up); sgVectorProductVec3(surface_east, surface_south, local_down); #else #define USE_LOCAL_UP #ifdef USE_LOCAL_UP sgMakeRotMat4( TMP, FG_PI_2 * RAD_TO_DEG, local_up ); #else sgMakeRotMat4( TMP, FG_PI_2 * RAD_TO_DEG, view_up ); #endif // USE_LOCAL_UP // cout << "sgMat4 TMP" << endl; // print_sgMat4( TMP ); sgXformVec3(surface_east, surface_south, TMP); #endif // USE_FAST_SURFACE_EAST // cout << "Surface direction directly east " << surface_east[0] << "," // << surface_east[1] << "," << surface_east[2] << endl; // cout << "Should be close to zero = " // << sgScalarProductVec3(surface_south, surface_east) << endl; } void FGView::CurrentNormalInLocalPlane(sgVec3 dst, sgVec3 src) { sgVec3 tmp; sgSetVec3(tmp, src[0], src[1], src[2] ); sgMat4 TMP; sgTransposeNegateMat4 ( TMP, UP ) ; sgXformVec3(tmp, tmp, TMP); sgSetVec3(dst, tmp[2], tmp[1], tmp[0] ); } // Destructor FGView::~FGView( void ) { }