// environment.cxx -- routines to model the natural environment // // Written by David Megginson, started February 2002. // // Copyright (C) 2002 David Megginson - david@megginson.com // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. // #ifdef HAVE_CONFIG_H # include #endif #include #include #include #include
#include "environment.hxx" #include "atmosphere.hxx" //////////////////////////////////////////////////////////////////////// // Atmosphere model. //////////////////////////////////////////////////////////////////////// #ifdef USING_TABLES // Calculated based on the ISA standard day, as found at e.g. // http://www.av8n.com/physics/altimetry.htm // Each line of data has 3 elements: // Elevation (ft), // temperature factor (dimensionless ratio of absolute temp), // pressure factor (dimensionless ratio) static double atmosphere_data[][3] = { { -3000.00, 1.021, 1.1133 }, { 0.00, 1.000, 1.0000 }, { 2952.76, 0.980, 0.8978 }, { 5905.51, 0.959, 0.8042 }, { 8858.27, 0.939, 0.7187 }, { 11811.02, 0.919, 0.6407 }, { 14763.78, 0.898, 0.5697 }, { 17716.54, 0.878, 0.5052 }, { 20669.29, 0.858, 0.4468 }, { 23622.05, 0.838, 0.3940 }, { 26574.80, 0.817, 0.3463 }, { 29527.56, 0.797, 0.3034 }, { 32480.31, 0.777, 0.2649 }, { 35433.07, 0.756, 0.2305 }, { 38385.83, 0.752, 0.2000 }, { 41338.58, 0.752, 0.1736 }, { 44291.34, 0.752, 0.1506 }, { 47244.09, 0.752, 0.1307 }, { 50196.85, 0.752, 0.1134 }, { 53149.61, 0.752, 0.0984 }, { 56102.36, 0.752, 0.0854 }, { 59055.12, 0.752, 0.0741 }, { 62007.87, 0.752, 0.0643 }, { 65000.00, 0.752, 0.0557 }, { 68000.00, 0.754, 0.0482 }, { 71000.00, 0.758, 0.0418 }, { 74000.00, 0.761, 0.0362 }, { 77000.00, 0.764, 0.0314 }, { 80000.00, 0.767, 0.0273 }, { 83000.00, 0.770, 0.0237 }, { 86000.00, 0.773, 0.0206 }, { 89000.00, 0.777, 0.0179 }, { 92000.00, 0.780, 0.0156 }, { 95000.00, 0.783, 0.0135 }, { 98000.00, 0.786, 0.0118 }, { 101000.00, 0.789, 0.0103 }, { -1, -1, -1 } }; static SGInterpTable * _temperature_degc_table = 0; static SGInterpTable * _pressure_inhg_table = 0; static void _setup_tables () { if (_temperature_degc_table != 0) return; _temperature_degc_table = new SGInterpTable; _pressure_inhg_table = new SGInterpTable; for (int i = 0; atmosphere_data[i][0] != -1; i++) { _temperature_degc_table->addEntry(atmosphere_data[i][0], atmosphere_data[i][1]); _pressure_inhg_table->addEntry(atmosphere_data[i][0], atmosphere_data[i][2]); } } #endif //////////////////////////////////////////////////////////////////////// // Implementation of FGEnvironment. //////////////////////////////////////////////////////////////////////// void FGEnvironment::_init() { live_update = false; elevation_ft = 0; visibility_m = 32000; temperature_sea_level_degc = 15; temperature_degc = 15; dewpoint_sea_level_degc = 5; // guess dewpoint_degc = 5; pressure_sea_level_inhg = 29.92; pressure_inhg = 29.92; density_slugft3 = 0; turbulence_magnitude_norm = 0; turbulence_rate_hz = 1; wind_from_heading_deg = 0; wind_speed_kt = 0; wind_from_north_fps = 0; wind_from_east_fps = 0; wind_from_down_fps = 0; altitude_half_to_sun_m = 1000; altitude_tropo_top_m = 10000; #ifdef USING_TABLES _setup_tables(); #endif _recalc_density(); _recalc_relative_humidity(); live_update = true; } FGEnvironment::FGEnvironment() { _init(); } FGEnvironment::FGEnvironment (const FGEnvironment &env) { _init(); copy(env); } FGEnvironment::~FGEnvironment() { Untie(); } FGEnvironment & FGEnvironment::operator = ( const FGEnvironment & other ) { copy( other ); return *this; } void FGEnvironment::copy (const FGEnvironment &env) { elevation_ft = env.elevation_ft; visibility_m = env.visibility_m; temperature_sea_level_degc = env.temperature_sea_level_degc; temperature_degc = env.temperature_degc; dewpoint_sea_level_degc = env.dewpoint_sea_level_degc; dewpoint_degc = env.dewpoint_degc; pressure_sea_level_inhg = env.pressure_sea_level_inhg; wind_from_heading_deg = env.wind_from_heading_deg; wind_speed_kt = env.wind_speed_kt; wind_from_north_fps = env.wind_from_north_fps; wind_from_east_fps = env.wind_from_east_fps; wind_from_down_fps = env.wind_from_down_fps; turbulence_magnitude_norm = env.turbulence_magnitude_norm; turbulence_rate_hz = env.turbulence_rate_hz; pressure_inhg = env.pressure_inhg; density_slugft3 = env.density_slugft3; density_tropo_avg_kgm3 = env.density_tropo_avg_kgm3; relative_humidity = env.relative_humidity; altitude_half_to_sun_m = env.altitude_half_to_sun_m; altitude_tropo_top_m = env.altitude_tropo_top_m; live_update = env.live_update; } static inline bool maybe_copy_value (FGEnvironment * env, const SGPropertyNode * node, const char * name, void (FGEnvironment::*setter)(double)) { const SGPropertyNode * child = node->getNode(name); // fragile: depends on not being typed // as a number if (child != 0 && child->hasValue() && child->getStringValue()[0] != '\0') { (env->*setter)(child->getDoubleValue()); return true; } else { return false; } } void FGEnvironment::read (const SGPropertyNode * node) { bool live_update = set_live_update( false ); maybe_copy_value(this, node, "visibility-m", &FGEnvironment::set_visibility_m); maybe_copy_value(this, node, "elevation-ft", &FGEnvironment::set_elevation_ft); if (!maybe_copy_value(this, node, "temperature-sea-level-degc", &FGEnvironment::set_temperature_sea_level_degc)) { if( maybe_copy_value(this, node, "temperature-degc", &FGEnvironment::set_temperature_degc)) { _recalc_sl_temperature(); } } if (!maybe_copy_value(this, node, "dewpoint-sea-level-degc", &FGEnvironment::set_dewpoint_sea_level_degc)) { if( maybe_copy_value(this, node, "dewpoint-degc", &FGEnvironment::set_dewpoint_degc)) { _recalc_sl_dewpoint(); } } if (!maybe_copy_value(this, node, "pressure-sea-level-inhg", &FGEnvironment::set_pressure_sea_level_inhg)) { if( maybe_copy_value(this, node, "pressure-inhg", &FGEnvironment::set_pressure_inhg)) { _recalc_sl_pressure(); } } maybe_copy_value(this, node, "wind-from-heading-deg", &FGEnvironment::set_wind_from_heading_deg); maybe_copy_value(this, node, "wind-speed-kt", &FGEnvironment::set_wind_speed_kt); maybe_copy_value(this, node, "turbulence/magnitude-norm", &FGEnvironment::set_turbulence_magnitude_norm); maybe_copy_value(this, node, "turbulence/rate-hz", &FGEnvironment::set_turbulence_rate_hz); // calculate derived properties here to avoid duplicate expensive computations _recalc_ne(); _recalc_alt_pt(); _recalc_alt_dewpoint(); _recalc_density(); _recalc_relative_humidity(); set_live_update(live_update); } void FGEnvironment::Tie( SGPropertyNode_ptr base, bool archivable ) { _tiedProperties.setRoot( base ); _tiedProperties.Tie( "visibility-m", this, &FGEnvironment::get_visibility_m, &FGEnvironment::set_visibility_m); _tiedProperties.Tie("temperature-sea-level-degc", this, &FGEnvironment::get_temperature_sea_level_degc, &FGEnvironment::set_temperature_sea_level_degc); _tiedProperties.Tie("temperature-degc", this, &FGEnvironment::get_temperature_degc, &FGEnvironment::set_temperature_degc); _tiedProperties.Tie("dewpoint-sea-level-degc", this, &FGEnvironment::get_dewpoint_sea_level_degc, &FGEnvironment::set_dewpoint_sea_level_degc); _tiedProperties.Tie("dewpoint-degc", this, &FGEnvironment::get_dewpoint_degc, &FGEnvironment::set_dewpoint_degc); _tiedProperties.Tie("pressure-sea-level-inhg", this, &FGEnvironment::get_pressure_sea_level_inhg, &FGEnvironment::set_pressure_sea_level_inhg); _tiedProperties.Tie("pressure-inhg", this, &FGEnvironment::get_pressure_inhg, &FGEnvironment::set_pressure_inhg); _tiedProperties.Tie("atmosphere/altitude-half-to-sun", this, &FGEnvironment::get_altitude_half_to_sun_m, &FGEnvironment::set_altitude_half_to_sun_m); _tiedProperties.Tie("atmosphere/altitude-troposphere-top", this, &FGEnvironment::get_altitude_tropo_top_m, &FGEnvironment::set_altitude_tropo_top_m); _tiedProperties.Tie("wind-from-heading-deg", this, &FGEnvironment::get_wind_from_heading_deg, &FGEnvironment::set_wind_from_heading_deg); _tiedProperties.Tie("wind-speed-kt", this, &FGEnvironment::get_wind_speed_kt, &FGEnvironment::set_wind_speed_kt); _tiedProperties.Tie("wind-from-north-fps", this, &FGEnvironment::get_wind_from_north_fps, &FGEnvironment::set_wind_from_north_fps); _tiedProperties.Tie("wind-from-east-fps", this, &FGEnvironment::get_wind_from_east_fps, &FGEnvironment::set_wind_from_east_fps); _tiedProperties.Tie("wind-from-down-fps", this, &FGEnvironment::get_wind_from_down_fps, &FGEnvironment::set_wind_from_down_fps); _tiedProperties.Tie("turbulence/magnitude-norm", this, &FGEnvironment::get_turbulence_magnitude_norm, &FGEnvironment::set_turbulence_magnitude_norm); _tiedProperties.Tie("turbulence/rate-hz", this, &FGEnvironment::get_turbulence_rate_hz, &FGEnvironment::set_turbulence_rate_hz); _tiedProperties.setAttribute( SGPropertyNode::ARCHIVE, archivable ); _tiedProperties.Tie("temperature-degf", this, &FGEnvironment::get_temperature_degf); _tiedProperties.Tie("density-slugft3", this, &FGEnvironment::get_density_slugft3); // read-only _tiedProperties.Tie("relative-humidity", this, &FGEnvironment::get_relative_humidity); //ro _tiedProperties.Tie("atmosphere/density-tropo-avg", this, &FGEnvironment::get_density_tropo_avg_kgm3); //ro } void FGEnvironment::Untie() { _tiedProperties.Untie(); } double FGEnvironment::get_visibility_m () const { return visibility_m; } double FGEnvironment::get_temperature_sea_level_degc () const { return temperature_sea_level_degc; } double FGEnvironment::get_temperature_degc () const { return temperature_degc; } double FGEnvironment::get_temperature_degf () const { return (temperature_degc * 9.0 / 5.0) + 32.0; } double FGEnvironment::get_dewpoint_sea_level_degc () const { return dewpoint_sea_level_degc; } double FGEnvironment::get_dewpoint_degc () const { return dewpoint_degc; } double FGEnvironment::get_pressure_sea_level_inhg () const { return pressure_sea_level_inhg; } double FGEnvironment::get_pressure_inhg () const { return pressure_inhg; } double FGEnvironment::get_density_slugft3 () const { return density_slugft3; } double FGEnvironment::get_relative_humidity () const { return relative_humidity; } double FGEnvironment::get_density_tropo_avg_kgm3 () const { return density_tropo_avg_kgm3; } double FGEnvironment::get_altitude_half_to_sun_m () const { return altitude_half_to_sun_m; } double FGEnvironment::get_altitude_tropo_top_m () const { return altitude_tropo_top_m; } double FGEnvironment::get_wind_from_heading_deg () const { return wind_from_heading_deg; } double FGEnvironment::get_wind_speed_kt () const { return wind_speed_kt; } double FGEnvironment::get_wind_from_north_fps () const { return wind_from_north_fps; } double FGEnvironment::get_wind_from_east_fps () const { return wind_from_east_fps; } double FGEnvironment::get_wind_from_down_fps () const { return wind_from_down_fps; } double FGEnvironment::get_turbulence_magnitude_norm () const { return turbulence_magnitude_norm; } double FGEnvironment::get_turbulence_rate_hz () const { return turbulence_rate_hz; } double FGEnvironment::get_elevation_ft () const { return elevation_ft; } void FGEnvironment::set_visibility_m (double v) { visibility_m = v; } void FGEnvironment::set_temperature_sea_level_degc (double t) { temperature_sea_level_degc = t; if (dewpoint_sea_level_degc > t) dewpoint_sea_level_degc = t; if( live_update ) { _recalc_alt_pt(); _recalc_density(); } } void FGEnvironment::set_temperature_degc (double t) { temperature_degc = t; if( live_update ) { _recalc_sl_temperature(); _recalc_sl_pressure(); _recalc_alt_pt(); _recalc_density(); _recalc_relative_humidity(); } } void FGEnvironment::set_dewpoint_sea_level_degc (double t) { dewpoint_sea_level_degc = t; if (temperature_sea_level_degc < t) temperature_sea_level_degc = t; if( live_update ) { _recalc_alt_dewpoint(); _recalc_density(); } } void FGEnvironment::set_dewpoint_degc (double t) { dewpoint_degc = t; if( live_update ) { _recalc_sl_dewpoint(); _recalc_density(); _recalc_relative_humidity(); } } void FGEnvironment::set_pressure_sea_level_inhg (double p) { pressure_sea_level_inhg = p; if( live_update ) { _recalc_alt_pt(); _recalc_density(); } } void FGEnvironment::set_pressure_inhg (double p) { pressure_inhg = p; if( live_update ) { _recalc_sl_pressure(); _recalc_density(); } } void FGEnvironment::set_wind_from_heading_deg (double h) { wind_from_heading_deg = h; if( live_update ) { _recalc_ne(); } } void FGEnvironment::set_wind_speed_kt (double s) { wind_speed_kt = s; if( live_update ) { _recalc_ne(); } } void FGEnvironment::set_wind_from_north_fps (double n) { wind_from_north_fps = n; if( live_update ) { _recalc_hdgspd(); } } void FGEnvironment::set_wind_from_east_fps (double e) { wind_from_east_fps = e; if( live_update ) { _recalc_hdgspd(); } } void FGEnvironment::set_wind_from_down_fps (double d) { wind_from_down_fps = d; if( live_update ) { _recalc_hdgspd(); } } void FGEnvironment::set_turbulence_magnitude_norm (double t) { turbulence_magnitude_norm = t; } void FGEnvironment::set_turbulence_rate_hz (double r) { turbulence_rate_hz = r; } void FGEnvironment::set_elevation_ft (double e) { elevation_ft = e; if( live_update ) { _recalc_alt_pt(); _recalc_alt_dewpoint(); _recalc_density(); _recalc_relative_humidity(); } } void FGEnvironment::set_altitude_half_to_sun_m (double alt) { altitude_half_to_sun_m = alt; if( live_update ) { _recalc_density_tropo_avg_kgm3(); } } void FGEnvironment::set_altitude_tropo_top_m (double alt) { altitude_tropo_top_m = alt; if( live_update ) { _recalc_density_tropo_avg_kgm3(); } } void FGEnvironment::_recalc_hdgspd () { wind_from_heading_deg = atan2(wind_from_east_fps, wind_from_north_fps) * SGD_RADIANS_TO_DEGREES; if( wind_from_heading_deg < 0 ) wind_from_heading_deg += 360.0; wind_speed_kt = sqrt(wind_from_north_fps * wind_from_north_fps + wind_from_east_fps * wind_from_east_fps) * SG_METER_TO_NM * SG_FEET_TO_METER * 3600; } void FGEnvironment::_recalc_ne () { double speed_fps = wind_speed_kt * SG_NM_TO_METER * SG_METER_TO_FEET * (1.0/3600); wind_from_north_fps = speed_fps * cos(wind_from_heading_deg * SGD_DEGREES_TO_RADIANS); wind_from_east_fps = speed_fps * sin(wind_from_heading_deg * SGD_DEGREES_TO_RADIANS); } // Intended to help with the interpretation of METAR data, // not for random in-flight outside-air temperatures. void FGEnvironment::_recalc_sl_temperature () { #if 0 { SG_LOG(SG_ENVIRONMENT, SG_DEBUG, "recalc_sl_temperature: using " << temperature_degc << " @ " << elevation_ft << " :: " << this); } #endif if (elevation_ft * atmodel::foot >= ISA_def[1].height) { SG_LOG(SG_ENVIRONMENT, SG_ALERT, "recalc_sl_temperature: " << "valid only in troposphere, not " << elevation_ft); return; } // Clamp: temperature of the stratosphere, in degrees C: double t_strato = ISA_def[1].temp - atmodel::freezing; if (temperature_degc < t_strato) temperature_sea_level_degc = t_strato; else temperature_sea_level_degc = temperature_degc + elevation_ft * atmodel::foot * ISA_def[0].lapse; // Alternative implemenation: // else temperature_sea_level_inhg = T_layer(0., elevation_ft * foot, // pressure_inhg * inHg, temperature_degc + freezing, ISA_def[0].lapse) - freezing; } void FGEnvironment::_recalc_sl_dewpoint () { // 0.2degC/1000ft // FIXME: this will work only for low // elevations dewpoint_sea_level_degc = dewpoint_degc + (elevation_ft * .0002); if (dewpoint_sea_level_degc > temperature_sea_level_degc) dewpoint_sea_level_degc = temperature_sea_level_degc; } void FGEnvironment::_recalc_alt_dewpoint () { // 0.2degC/1000ft // FIXME: this will work only for low // elevations dewpoint_degc = dewpoint_sea_level_degc + (elevation_ft * .0002); if (dewpoint_degc > temperature_degc) dewpoint_degc = temperature_degc; } void FGEnvironment::_recalc_sl_pressure () { using namespace atmodel; #if 0 { SG_LOG(SG_ENVIRONMENT, SG_ALERT, "recalc_sl_pressure: using " << pressure_inhg << " and " << temperature_degc << " @ " << elevation_ft << " :: " << this); } #endif pressure_sea_level_inhg = P_layer(0., elevation_ft * foot, pressure_inhg * inHg, temperature_degc + freezing, ISA_def[0].lapse) / inHg; } // This gets called at frame rate, to account for the aircraft's // changing altitude. // Called by set_elevation_ft() which is called by FGEnvironmentMgr::update void FGEnvironment::_recalc_alt_pt () { using namespace atmodel; #if 0 { static int count(0); if (++count % 1000 == 0) { SG_LOG(SG_ENVIRONMENT, SG_ALERT, "recalc_alt_pt for: " << elevation_ft << " using " << pressure_sea_level_inhg << " and " << temperature_sea_level_degc << " :: " << this << " # " << count); } } #endif double press = pressure_inhg * inHg; double temp = temperature_degc + freezing; std::tie(press, temp) = PT_vs_hpt(elevation_ft * foot, pressure_sea_level_inhg * inHg, temperature_sea_level_degc + freezing); temperature_degc = temp - freezing; pressure_inhg = press / inHg; } void FGEnvironment::_recalc_density () { const double pressure_psf = pressure_inhg * 70.7487; // adjust for humidity // calculations taken from USA Today (oops!) at // http://www.usatoday.com/weather/basics/density-calculations.htm const double temperature_degk = temperature_degc + 273.15; const double pressure_mb = pressure_inhg * 33.86; const double vapor_pressure_mb = 6.11 * pow(10.0, 7.5 * dewpoint_degc / (237.7 + dewpoint_degc)); if ((pressure_mb <= 0.0) || (vapor_pressure_mb <= 0.0)) { density_slugft3 = 0.0; return; } double virtual_temperature_degk = temperature_degk / (1 - (vapor_pressure_mb / pressure_mb) * (1.0 - 0.622)); double virtual_temperature_degr = virtual_temperature_degk * 1.8; density_slugft3 = pressure_psf / (virtual_temperature_degr * 1718); _recalc_density_tropo_avg_kgm3(); } // This is used to calculate the average density on the path // of sunlight to the observer for calculating sun-color void FGEnvironment::_recalc_density_tropo_avg_kgm3 () { const double pressure_mb = pressure_inhg * 33.86; const double vaporpressure = 6.11 * pow(10.0, ((7.5 * dewpoint_degc) / (237.7 + dewpoint_degc))); const double virtual_temp = (temperature_degc + 273.15) / (1 - 0.379 * (vaporpressure/pressure_mb)); if ((pressure_mb <= 0.0) || (virtual_temp <= 0.0)) { density_tropo_avg_kgm3 = 0.0; return; } double density_half = (100 * pressure_mb * exp(-altitude_half_to_sun_m / 8000)) / (287.05 * virtual_temp); double density_tropo = (100 * pressure_mb * exp((-1 * altitude_tropo_top_m) / 8000)) / ( 287.05 * virtual_temp); density_tropo_avg_kgm3 = ((density_slugft3 * 515.379) + density_half + density_tropo) / 3; } void FGEnvironment::_recalc_relative_humidity () { /* double vaporpressure = 6.11 * pow(10.0, ((7.5 * dewpoint_degc) / ( 237.7 + dewpoint_degc))); double sat_vaporpressure = 6.11 * pow(10.0, ((7.5 * temperature_degc) / ( 237.7 + temperature_degc)) ); relative_humidity = 100 * vaporpressure / sat_vaporpressure ; with a little algebra, this gets the same result and spares two multiplications and one pow() */ double a = (7.5 * dewpoint_degc) / ( 237.7 + dewpoint_degc); double b = (7.5 * temperature_degc) / ( 237.7 + temperature_degc); relative_humidity = 100 * pow(10.0,a-b); } bool FGEnvironment::set_live_update( bool _live_update ) { bool b = live_update; live_update = _live_update; return b; } //////////////////////////////////////////////////////////////////////// // Functions. //////////////////////////////////////////////////////////////////////// static inline double do_interp (double a, double b, double fraction) { double retval = (a + ((b - a) * fraction)); return retval; } static inline double do_interp_deg (double a, double b, double fraction) { a = fmod(a, 360); b = fmod(b, 360); if (fabs(b-a) > 180) { if (a < b) a += 360; else b += 360; } return fmod(do_interp(a, b, fraction), 360); } FGEnvironment & FGEnvironment::interpolate( const FGEnvironment & env2, double fraction, FGEnvironment * result) const { // don't calculate each internal property every time we set a single value // we trigger that at the end of the interpolation process bool live_update = result->set_live_update( false ); result->set_visibility_m (do_interp(get_visibility_m(), env2.get_visibility_m(), fraction)); result->set_temperature_sea_level_degc (do_interp(get_temperature_sea_level_degc(), env2.get_temperature_sea_level_degc(), fraction)); result->set_dewpoint_sea_level_degc (do_interp(get_dewpoint_sea_level_degc(), env2.get_dewpoint_sea_level_degc(), fraction)); result->set_pressure_sea_level_inhg (do_interp(get_pressure_sea_level_inhg(), env2.get_pressure_sea_level_inhg(), fraction)); result->set_wind_from_heading_deg (do_interp_deg(get_wind_from_heading_deg(), env2.get_wind_from_heading_deg(), fraction)); result->set_wind_speed_kt (do_interp(get_wind_speed_kt(), env2.get_wind_speed_kt(), fraction)); result->set_elevation_ft (do_interp(get_elevation_ft(), env2.get_elevation_ft(), fraction)); result->set_turbulence_magnitude_norm (do_interp(get_turbulence_magnitude_norm(), env2.get_turbulence_magnitude_norm(), fraction)); result->set_turbulence_rate_hz (do_interp(get_turbulence_rate_hz(), env2.get_turbulence_rate_hz(), fraction)); // calculate derived properties here to avoid duplicate expensive computations result->_recalc_ne(); result->_recalc_alt_pt(); result->_recalc_alt_dewpoint(); result->_recalc_density(); result->_recalc_relative_humidity(); result->set_live_update(live_update); return *result; } // end of environment.cxx