// dclgps.cxx - a class to extend the operation of FG's current GPS // code, and provide support for a KLN89-specific instrument. It // is envisioned that eventually this file and class will be split // up between current FG code and new KLN89-specific code and removed. // // Written by David Luff, started 2005. // // Copyright (C) 2005 - David C Luff: daveluff --AT-- ntlworld --D0T-- com // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. // // $Id$ #include "dclgps.hxx" #include <simgear/sg_inlines.h> #include <simgear/timing/sg_time.hxx> #include <simgear/magvar/magvar.hxx> #include <Main/fg_props.hxx> #include <Navaids/fix.hxx> #include <Navaids/navrecord.hxx> #include <Airports/simple.hxx> #include <Airports/runways.hxx> #include <iostream> using namespace std; GPSWaypoint::GPSWaypoint() { appType = GPS_APP_NONE; } GPSWaypoint::GPSWaypoint(const std::string& aIdent, float aLat, float aLon, GPSWpType aType) : id(aIdent), lat(aLat), lon(aLon), type(aType), appType(GPS_APP_NONE) { } GPSWaypoint::~GPSWaypoint() {} string GPSWaypoint::GetAprId() { if(appType == GPS_IAF) return(id + 'i'); else if(appType == GPS_FAF) return(id + 'f'); else if(appType == GPS_MAP) return(id + 'm'); else if(appType == GPS_MAHP) return(id + 'h'); else return(id); } static GPSWpType GPSWpTypeFromFGPosType(FGPositioned::Type aType) { switch (aType) { case FGPositioned::AIRPORT: case FGPositioned::SEAPORT: case FGPositioned::HELIPORT: return GPS_WP_APT; case FGPositioned::VOR: return GPS_WP_VOR; case FGPositioned::NDB: return GPS_WP_NDB; case FGPositioned::WAYPOINT: return GPS_WP_USR; case FGPositioned::FIX: return GPS_WP_INT; default: return GPS_WP_USR; } } GPSWaypoint* GPSWaypoint::createFromPositioned(const FGPositioned* aPos) { if (!aPos) { return NULL; // happens if find returns no match } return new GPSWaypoint(aPos->ident(), aPos->latitude() * SG_DEGREES_TO_RADIANS, aPos->longitude() * SG_DEGREES_TO_RADIANS, GPSWpTypeFromFGPosType(aPos->type()) ); } ostream& operator << (ostream& os, GPSAppWpType type) { switch(type) { case(GPS_IAF): return(os << "IAF"); case(GPS_IAP): return(os << "IAP"); case(GPS_FAF): return(os << "FAF"); case(GPS_MAP): return(os << "MAP"); case(GPS_MAHP): return(os << "MAHP"); case(GPS_HDR): return(os << "HEADER"); case(GPS_FENCE): return(os << "FENCE"); case(GPS_APP_NONE): return(os << "NONE"); } return(os << "ERROR - Unknown switch in GPSAppWpType operator << "); } FGIAP::FGIAP() { } FGIAP::~FGIAP() { } FGNPIAP::FGNPIAP() { } FGNPIAP::~FGNPIAP() { } ClockTime::ClockTime() { _hr = 0; _min = 0; } ClockTime::ClockTime(int hr, int min) { while(hr < 0) { hr += 24; } _hr = hr % 24; while(min < 0) { min += 60; } while(min > 60) { min -= 60; } _min = min; } ClockTime::~ClockTime() { } // ------------------------------------------------------------------------------------- // DCLGPS::DCLGPS(RenderArea2D* instrument) { _instrument = instrument; _nFields = 1; _maxFields = 2; // Units - lets default to US units - FG can set them to other units from config during startup if desired. _altUnits = GPS_ALT_UNITS_FT; _baroUnits = GPS_PRES_UNITS_IN; _velUnits = GPS_VEL_UNITS_KT; _distUnits = GPS_DIST_UNITS_NM; _lon_node = fgGetNode("/instrumentation/gps/indicated-longitude-deg", true); _lat_node = fgGetNode("/instrumentation/gps/indicated-latitude-deg", true); _alt_node = fgGetNode("/instrumentation/gps/indicated-altitude-ft", true); _grnd_speed_node = fgGetNode("/instrumentation/gps/indicated-ground-speed-kt", true); _true_track_node = fgGetNode("/instrumentation/gps/indicated-track-true-deg", true); _mag_track_node = fgGetNode("/instrumentation/gps/indicated-track-magnetic-deg", true); // Use FG's position values at construction in case FG's gps has not run first update yet. _lon = fgGetDouble("/position/longitude-deg") * SG_DEGREES_TO_RADIANS; _lat = fgGetDouble("/position/latitude-deg") * SG_DEGREES_TO_RADIANS; _alt = fgGetDouble("/position/altitude-ft"); // Note - we can depriciate _gpsLat and _gpsLon if we implement error handling in FG // gps code and not our own. _gpsLon = _lon; _gpsLat = _lat; _checkLon = _gpsLon; _checkLat = _gpsLat; _groundSpeed_ms = 0.0; _groundSpeed_kts = 0.0; _track = 0.0; _magTrackDeg = 0.0; // Sensible defaults. These can be overriden by derived classes if desired. _cdiScales.clear(); _cdiScales.push_back(5.0); _cdiScales.push_back(1.0); _cdiScales.push_back(0.3); _currentCdiScaleIndex = 0; _targetCdiScaleIndex = 0; _sourceCdiScaleIndex = 0; _cdiScaleTransition = false; _currentCdiScale = 5.0; _cleanUpPage = -1; _activeWaypoint.id.clear(); _dist2Act = 0.0; _crosstrackDist = 0.0; _headingBugTo = true; _navFlagged = true; _waypointAlert = false; _departed = false; _departureTimeString = "----"; _elapsedTime = 0.0; _powerOnTime.set_hr(0); _powerOnTime.set_min(0); _powerOnTimerSet = false; _alarmSet = false; // Configuration Initialisation // Should this be in kln89.cxx ? _turnAnticipationEnabled = false; _suaAlertEnabled = false; _altAlertEnabled = false; _time = new SGTime; _messageStack.clear(); _dto = false; _approachLoaded = false; _approachArm = false; _approachReallyArmed = false; _approachActive = false; _approachFP = new GPSFlightPlan; } DCLGPS::~DCLGPS() { delete _time; delete _approachFP; // Don't need to delete the waypoints inside since they point to // the waypoints in the approach database. // TODO - may need to delete the approach database!! } void DCLGPS::draw(osg::State& state) { _instrument->draw(state); } void DCLGPS::init() { // Not sure if this should be here, but OK for now. CreateDefaultFlightPlans(); // Hack - hardwire some instrument approaches for development. // These will shortly be replaced by a routine to read ARINC data from file instead. FGNPIAP* iap; GPSWaypoint* wp; GPSFlightPlan* fp; const GPSWaypoint* cwp; iap = new FGNPIAP; iap->_aptIdent = "KHAF"; iap->_ident = "R12-Y"; iap->_name = ExpandSIAPIdent(iap->_ident); iap->_rwyStr = "12"; iap->_approachRoutes.clear(); iap->_IAP.clear(); // ------- wp = new GPSWaypoint; wp->id = "GOBBS"; // Nasty using the find any function here, but it saves converting data from FGFix etc. cwp = FindFirstByExactId(wp->id); if(cwp) { *wp = *cwp; wp->appType = GPS_IAF; fp = new GPSFlightPlan; fp->waypoints.push_back(wp); } else { //cout << "Unable to find waypoint " << wp->id << '\n'; } // ------- wp = new GPSWaypoint; wp->id = "FUJCE"; cwp = FindFirstByExactId(wp->id); if(cwp) { *wp = *cwp; wp->appType = GPS_IAP; fp->waypoints.push_back(wp); iap->_approachRoutes.push_back(fp); iap->_IAP.push_back(wp); } else { //cout << "Unable to find waypoint " << wp->id << '\n'; } // ------- wp = new GPSWaypoint; wp->id = "JEVXY"; cwp = FindFirstByExactId(wp->id); if(cwp) { *wp = *cwp; wp->appType = GPS_FAF; iap->_IAP.push_back(wp); } else { //cout << "Unable to find waypoint " << wp->id << '\n'; } // ------- wp = new GPSWaypoint; wp->id = "RW12"; wp->appType = GPS_MAP; if(wp->id.substr(0, 2) == "RW" && wp->appType == GPS_MAP) { // Assume that this is a missed-approach point based on the runway number, which appears to be standard for most approaches. const FGAirport* apt = fgFindAirportID(iap->_aptIdent); if(apt) { // TODO - sanity check the waypoint ID to ensure we have a double digit number FGRunway* rwy = apt->getRunwayByIdent(wp->id.substr(2, 2)); if(rwy) { wp->lat = rwy->begin().getLatitudeRad(); wp->lon = rwy->begin().getLongitudeRad(); } } } else { cwp = FindFirstByExactId(wp->id); if(cwp) { *wp = *cwp; wp->appType = GPS_MAP; } else { //cout << "Unable to find waypoint " << wp->id << '\n'; } } iap->_IAP.push_back(wp); // ------- wp = new GPSWaypoint; wp->id = "SEEMS"; cwp = FindFirstByExactId(wp->id); if(cwp) { *wp = *cwp; wp->appType = GPS_MAHP; iap->_IAP.push_back(wp); } else { //cout << "Unable to find waypoint " << wp->id << '\n'; } // ------- _np_iap[iap->_aptIdent].push_back(iap); } void DCLGPS::bind() { fgTie("/instrumentation/gps/waypoint-alert", this, &DCLGPS::GetWaypointAlert); fgTie("/instrumentation/gps/leg-mode", this, &DCLGPS::GetLegMode); fgTie("/instrumentation/gps/obs-mode", this, &DCLGPS::GetOBSMode); fgTie("/instrumentation/gps/approach-arm", this, &DCLGPS::GetApproachArm); fgTie("/instrumentation/gps/approach-active", this, &DCLGPS::GetApproachActive); fgTie("/instrumentation/gps/cdi-deflection", this, &DCLGPS::GetCDIDeflection); fgTie("/instrumentation/gps/to-flag", this, &DCLGPS::GetToFlag); } void DCLGPS::unbind() { fgUntie("/instrumentation/gps/waypoint-alert"); fgUntie("/instrumentation/gps/leg-mode"); fgUntie("/instrumentation/gps/obs-mode"); fgUntie("/instrumentation/gps/approach-arm"); fgUntie("/instrumentation/gps/approach-active"); fgUntie("/instrumentation/gps/cdi-deflection"); } void DCLGPS::update(double dt) { //cout << "update called!\n"; _lon = _lon_node->getDoubleValue() * SG_DEGREES_TO_RADIANS; _lat = _lat_node->getDoubleValue() * SG_DEGREES_TO_RADIANS; _alt = _alt_node->getDoubleValue(); _groundSpeed_kts = _grnd_speed_node->getDoubleValue(); _groundSpeed_ms = _groundSpeed_kts * 0.5144444444; _track = _true_track_node->getDoubleValue(); _magTrackDeg = _mag_track_node->getDoubleValue(); // Note - we can depriciate _gpsLat and _gpsLon if we implement error handling in FG // gps code and not our own. _gpsLon = _lon; _gpsLat = _lat; // Check for abnormal position slew if(GetGreatCircleDistance(_gpsLat, _gpsLon, _checkLat, _checkLon) > 1.0) { OrientateToActiveFlightPlan(); } _checkLon = _gpsLon; _checkLat = _gpsLat; // TODO - check for unit power before running this. if(!_powerOnTimerSet) { SetPowerOnTimer(); } // Check if an alarm timer has expired if(_alarmSet) { if(_alarmTime.hr() == atoi(fgGetString("/instrumentation/clock/indicated-hour")) && _alarmTime.min() == atoi(fgGetString("/instrumentation/clock/indicated-min"))) { _messageStack.push_back("*Timer Expired"); _alarmSet = false; } } if(!_departed) { if(_groundSpeed_kts > 30.0) { _departed = true; string th = fgGetString("/instrumentation/clock/indicated-hour"); string tm = fgGetString("/instrumentation/clock/indicated-min"); if(th.size() == 1) th = "0" + th; if(tm.size() == 1) tm = "0" + tm; _departureTimeString = th + tm; } } else { // TODO - check - is this prone to drift error over time? // Should we difference the departure and current times? // What about when the user resets the time of day from the menu? _elapsedTime += dt; } _time->update(_gpsLon * SG_DEGREES_TO_RADIANS, _gpsLat * SG_DEGREES_TO_RADIANS, 0, 0); // FIXME - currently all the below assumes leg mode and no DTO or OBS cancelled. if(_activeFP->IsEmpty()) { // Not sure if we need to reset these each update or only when fp altered _activeWaypoint.id.clear(); _navFlagged = true; } else if(_activeFP->waypoints.size() == 1) { _activeWaypoint.id.clear(); } else { _navFlagged = false; if(_activeWaypoint.id.empty() || _fromWaypoint.id.empty()) { //cout << "Error, in leg mode with flightplan of 2 or more waypoints, but either active or from wp is NULL!\n"; OrientateToActiveFlightPlan(); } // Approach stuff if(_approachLoaded) { if(!_approachReallyArmed && !_approachActive) { // arm if within 30nm of airport. // TODO - let user cancel approach arm using external GPS-APR switch bool multi; const FGAirport* ap = FindFirstAptById(_approachID, multi, true); if(ap != NULL) { double d = GetGreatCircleDistance(_gpsLat, _gpsLon, ap->getLatitude() * SG_DEGREES_TO_RADIANS, ap->getLongitude() * SG_DEGREES_TO_RADIANS); if(d <= 30) { _approachArm = true; _approachReallyArmed = true; _messageStack.push_back("*Press ALT To Set Baro"); // Not sure what we do if the user has already set CDI to 0.3 nm? _targetCdiScaleIndex = 1; if(_currentCdiScaleIndex == 1) { // No problem! } else if(_currentCdiScaleIndex == 0) { _sourceCdiScaleIndex = 0; _cdiScaleTransition = true; _cdiTransitionTime = 30.0; _currentCdiScale = _cdiScales[_currentCdiScaleIndex]; } } } } else { // Check for approach active - we can only activate approach if it is really armed. if(_activeWaypoint.appType == GPS_FAF) { //cout << "Active waypoint is FAF, id is " << _activeWaypoint.id << '\n'; if(GetGreatCircleDistance(_gpsLat, _gpsLon, _activeWaypoint.lat, _activeWaypoint.lon) <= 2.0 && !_obsMode) { // Assume heading is OK for now _approachArm = false; // TODO - check - maybe arm is left on when actv comes on? _approachReallyArmed = false; _approachActive = true; _targetCdiScaleIndex = 2; if(_currentCdiScaleIndex == 2) { // No problem! } else if(_currentCdiScaleIndex == 1) { _sourceCdiScaleIndex = 1; _cdiScaleTransition = true; _cdiTransitionTime = 30.0; // TODO - compress it if time to FAF < 30sec _currentCdiScale = _cdiScales[_currentCdiScaleIndex]; } else { // Abort going active? _approachActive = false; } } } } } // CDI scale transition stuff if(_cdiScaleTransition) { if(fabs(_currentCdiScale - _cdiScales[_targetCdiScaleIndex]) < 0.001) { _currentCdiScale = _cdiScales[_targetCdiScaleIndex]; _currentCdiScaleIndex = _targetCdiScaleIndex; _cdiScaleTransition = false; } else { double scaleDiff = (_targetCdiScaleIndex > _sourceCdiScaleIndex ? _cdiScales[_sourceCdiScaleIndex] - _cdiScales[_targetCdiScaleIndex] : _cdiScales[_targetCdiScaleIndex] - _cdiScales[_sourceCdiScaleIndex]); //cout << "ScaleDiff = " << scaleDiff << '\n'; if(_targetCdiScaleIndex > _sourceCdiScaleIndex) { // Scaling down eg. 5nm -> 1nm _currentCdiScale -= (scaleDiff * dt / _cdiTransitionTime); if(_currentCdiScale < _cdiScales[_targetCdiScaleIndex]) { _currentCdiScale = _cdiScales[_targetCdiScaleIndex]; _currentCdiScaleIndex = _targetCdiScaleIndex; _cdiScaleTransition = false; } } else { _currentCdiScale += (scaleDiff * dt / _cdiTransitionTime); if(_currentCdiScale > _cdiScales[_targetCdiScaleIndex]) { _currentCdiScale = _cdiScales[_targetCdiScaleIndex]; _currentCdiScaleIndex = _targetCdiScaleIndex; _cdiScaleTransition = false; } } //cout << "_currentCdiScale = " << _currentCdiScale << '\n'; } } else { _currentCdiScale = _cdiScales[_currentCdiScaleIndex]; } // Urgh - I've been setting the heading bug based on DTK, // bug I think it should be based on heading re. active waypoint // based on what the sim does after the final waypoint is passed. // (DTK remains the same, but if track is held == DTK heading bug // reverses to from once wp is passed). /* if(_fromWaypoint != NULL) { // TODO - how do we handle the change of track with distance over long legs? _dtkTrue = GetGreatCircleCourse(_fromWaypoint->lat, _fromWaypoint->lon, _activeWaypoint->lat, _activeWaypoint->lon) * SG_RADIANS_TO_DEGREES; _dtkMag = GetMagHeadingFromTo(_fromWaypoint->lat, _fromWaypoint->lon, _activeWaypoint->lat, _activeWaypoint->lon); // Don't change the heading bug if speed is too low otherwise it flickers to/from at rest if(_groundSpeed_ms > 5) { //cout << "track = " << _track << ", dtk = " << _dtkTrue << '\n'; double courseDev = _track - _dtkTrue; //cout << "courseDev = " << courseDev << ", normalized = "; SG_NORMALIZE_RANGE(courseDev, -180.0, 180.0); //cout << courseDev << '\n'; _headingBugTo = (fabs(courseDev) > 90.0 ? false : true); } } else { _dtkTrue = 0.0; _dtkMag = 0.0; // TODO - in DTO operation the position of initiation of DTO defines the "from waypoint". } */ if(!_activeWaypoint.id.empty()) { double hdgTrue = GetGreatCircleCourse(_gpsLat, _gpsLon, _activeWaypoint.lat, _activeWaypoint.lon) * SG_RADIANS_TO_DEGREES; if(_groundSpeed_ms > 5) { //cout << "track = " << _track << ", hdgTrue = " << hdgTrue << '\n'; double courseDev = _track - hdgTrue; //cout << "courseDev = " << courseDev << ", normalized = "; SG_NORMALIZE_RANGE(courseDev, -180.0, 180.0); //cout << courseDev << '\n'; _headingBugTo = (fabs(courseDev) > 90.0 ? false : true); } if(!_fromWaypoint.id.empty()) { _dtkTrue = GetGreatCircleCourse(_fromWaypoint.lat, _fromWaypoint.lon, _activeWaypoint.lat, _activeWaypoint.lon) * SG_RADIANS_TO_DEGREES; _dtkMag = GetMagHeadingFromTo(_fromWaypoint.lat, _fromWaypoint.lon, _activeWaypoint.lat, _activeWaypoint.lon); } else { _dtkTrue = 0.0; _dtkMag = 0.0; } } _dist2Act = GetGreatCircleDistance(_gpsLat, _gpsLon, _activeWaypoint.lat, _activeWaypoint.lon) * SG_NM_TO_METER; if(_groundSpeed_ms > 10.0) { _eta = _dist2Act / _groundSpeed_ms; if(_eta <= 36) { // TODO - this is slightly different if turn anticipation is enabled. if(_headingBugTo) { _waypointAlert = true; // TODO - not if the from flag is set. } } if(_eta < 60) { // Check if we should sequence to next leg. // Perhaps this should be done on distance instead, but 60s time (about 1 - 2 nm) seems reasonable for now. //double reverseHeading = GetGreatCircleCourse(_activeWaypoint->lat, _activeWaypoint->lon, _fromWaypoint->lat, _fromWaypoint->lon); // Hack - let's cheat and do it on heading bug for now. TODO - that stops us 'cutting the corner' // when we happen to approach the inside turn of a waypoint - we should probably sequence at the midpoint // of the heading difference between legs in this instance. int idx = GetActiveWaypointIndex(); bool finalLeg = (idx == (int)(_activeFP->waypoints.size()) - 1 ? true : false); bool finalDto = (_dto && idx == -1); // Dto operation to a waypoint not in the flightplan - we don't sequence in this instance if(!_headingBugTo) { if(finalLeg) { // Do nothing - not sure if Dto should switch off when arriving at the final waypoint of a flightplan } else if(finalDto) { // Do nothing } else if(_activeWaypoint.appType == GPS_MAP) { // Don't sequence beyond the missed approach point //cout << "ACTIVE WAYPOINT is MAP - not sequencing!!!!!\n"; } else { //cout << "Sequencing...\n"; _fromWaypoint = _activeWaypoint; _activeWaypoint = *_activeFP->waypoints[idx + 1]; _dto = false; // TODO - course alteration message format is dependent on whether we are slaved HSI/CDI indicator or not. // For now assume we are not. string s; if(fgGetBool("/instrumentation/nav[0]/slaved-to-gps")) { // TODO - avoid the hardwiring on nav[0] s = "Adj Nav Crs to "; } else { string s = "GPS Course is "; } double d = GetMagHeadingFromTo(_fromWaypoint.lat, _fromWaypoint.lon, _activeWaypoint.lat, _activeWaypoint.lon); while(d < 0.0) d += 360.0; while(d >= 360.0) d -= 360.0; char buf[4]; snprintf(buf, 4, "%03i", (int)(d + 0.5)); s += buf; _messageStack.push_back(s); } _waypointAlert = false; } } } else { _eta = 0.0; } /* // First attempt at a sensible cross-track correction calculation // Uh? - I think this is implemented further down the file! if(_fromWaypoint != NULL) { } else { _crosstrackDist = 0.0; } */ } } /* Expand a SIAP ident to the full procedure name (as shown on the approach chart). NOTE: Some of this is inferred from data, some is from documentation. Example expansions from ARINC 424-18 [and the airport they're taken from]: "R10LY" <--> "RNAV (GPS) Y RWY 10 L" [KBOI] "R10-Z" <--> "RNAV (GPS) Z RWY 10" [KHTO] "S25" <--> "VOR or GPS RWY 25" [KHHR] "P20" <--> "GPS RWY 20" [KDAN] "NDB-B" <--> "NDB or GPS-B" [KDAW] "NDBC" <--> "NDB or GPS-C" [KEMT] "VDMA" <--> "VOR/DME or GPS-A" [KDAW] "VDM-A" <--> "VOR/DME or GPS-A" [KEAG] "VDMB" <--> "VOR/DME or GPS-B" [KDKX] "VORA" <--> "VOR or GPS-A" [KEMT] It seems that there are 2 basic types of expansions; those that include the runway and those that don't. Of those that don't, it seems that 2 different positions within the string to encode the identifying letter are used, i.e. with a dash and without. */ string DCLGPS::ExpandSIAPIdent(const string& ident) { string name; bool has_rwy; switch(ident[0]) { case 'N': name = "NDB or GPS"; has_rwy = false; break; case 'P': name = "GPS"; has_rwy = true; break; case 'R': name = "RNAV (GPS)"; has_rwy = true; break; case 'S': name = "VOR or GPS"; has_rwy = true; break; case 'V': if(ident[1] == 'D') name = "VOR/DME or GPS"; else name = "VOR or GPS"; has_rwy = false; break; default: // TODO output a log message break; } if(has_rwy) { // Add the identifying letter if present if(ident.size() == 5) { name += ' '; name += ident[4]; } // Add the runway name += " RWY "; name += ident.substr(1, 2); // Add a left/right/centre indication if present. if(ident.size() > 3) { if((ident[3] != '-') && (ident[3] != ' ')) { // Early versions of the spec allowed a blank instead of a dash so check for both name += ' '; name += ident[3]; } } } else { // Add the identifying letter, which I *think* should always be present, but seems to be inconsistent as to whether a dash is used. if(ident.size() == 5) { name += '-'; name += ident[4]; } else if(ident.size() == 4) { name += '-'; name += ident[3]; } else { // No suffix letter } } return(name); } GPSWaypoint* DCLGPS::GetActiveWaypoint() { return &_activeWaypoint; } // Returns meters float DCLGPS::GetDistToActiveWaypoint() { return _dist2Act; } // I don't yet fully understand all the gotchas about where to source time from. // This function sets the initial timer before the clock exports properties // and the one below uses the clock to be consistent with the rest of the code. // It might change soonish... void DCLGPS::SetPowerOnTimer() { struct tm *t = globals->get_time_params()->getGmt(); _powerOnTime.set_hr(t->tm_hour); _powerOnTime.set_min(t->tm_min); _powerOnTimerSet = true; } void DCLGPS::ResetPowerOnTimer() { _powerOnTime.set_hr(atoi(fgGetString("/instrumentation/clock/indicated-hour"))); _powerOnTime.set_min(atoi(fgGetString("/instrumentation/clock/indicated-min"))); _powerOnTimerSet = true; } double DCLGPS::GetCDIDeflection() const { double xtd = CalcCrossTrackDeviation(); //nm return((xtd / _currentCdiScale) * 5.0 * 2.5 * -1.0); } void DCLGPS::DtoInitiate(const string& s) { const GPSWaypoint* wp = FindFirstByExactId(s); if(wp) { // TODO - Currently we start DTO operation unconditionally, regardless of which mode we are in. // In fact, the following rules apply: // In LEG mode, start DTO as we currently do. // In OBS mode, set the active waypoint to the requested waypoint, and then: // If the KLN89 is not connected to an external HSI or CDI, set the OBS course to go direct to the waypoint. // If the KLN89 *is* connected to an external HSI or CDI, it cannot set the course itself, and will display // a scratchpad message with the course to set manually on the HSI/CDI. // In both OBS cases, leave _dto false, since we don't need the virtual waypoint created. _dto = true; _activeWaypoint = *wp; _fromWaypoint.lat = _gpsLat; _fromWaypoint.lon = _gpsLon; _fromWaypoint.type = GPS_WP_VIRT; _fromWaypoint.id = "DTOWP"; delete wp; } else { _dto = false; } } void DCLGPS::DtoCancel() { if(_dto) { // i.e. don't bother reorientating if we're just cancelling a DTO button press // without having previously initiated DTO. OrientateToActiveFlightPlan(); } _dto = false; } void DCLGPS::ToggleOBSMode() { _obsMode = !_obsMode; if(_obsMode) { if(!_activeWaypoint.id.empty()) { _obsHeading = static_cast<int>(_dtkMag); } // TODO - the _fromWaypoint location will change as the OBS heading changes. // Might need to store the OBS initiation position somewhere in case it is needed again. SetOBSFromWaypoint(); } } // Set the _fromWaypoint position based on the active waypoint and OBS radial. void DCLGPS::SetOBSFromWaypoint() { if(!_obsMode) return; if(_activeWaypoint.id.empty()) return; // TODO - base the 180 deg correction on the to/from flag. _fromWaypoint = GetPositionOnMagRadial(_activeWaypoint, 10, _obsHeading + 180.0); _fromWaypoint.id = "OBSWP"; } void DCLGPS::CDIFSDIncrease() { if(_currentCdiScaleIndex == 0) { _currentCdiScaleIndex = _cdiScales.size() - 1; } else { _currentCdiScaleIndex--; } } void DCLGPS::CDIFSDDecrease() { _currentCdiScaleIndex++; if(_currentCdiScaleIndex == _cdiScales.size()) { _currentCdiScaleIndex = 0; } } void DCLGPS::DrawChar(char c, int field, int px, int py, bool bold) { } void DCLGPS::DrawText(const string& s, int field, int px, int py, bool bold) { } void DCLGPS::SetBaroUnits(int n, bool wrap) { if(n < 1) { _baroUnits = (GPSPressureUnits)(wrap ? 3 : 1); } else if(n > 3) { _baroUnits = (GPSPressureUnits)(wrap ? 1 : 3); } else { _baroUnits = (GPSPressureUnits)n; } } void DCLGPS::CreateDefaultFlightPlans() {} // Get the time to the active waypoint in seconds. // Returns -1 if groundspeed < 30 kts double DCLGPS::GetTimeToActiveWaypoint() { if(_groundSpeed_kts < 30.0) { return(-1.0); } else { return(_eta); } } // Get the time to the final waypoint in seconds. // Returns -1 if groundspeed < 30 kts double DCLGPS::GetETE() { if(_groundSpeed_kts < 30.0) { return(-1.0); } else { // TODO - handle OBS / DTO operation appropriately if(_activeFP->waypoints.empty()) { return(-1.0); } else { return(GetTimeToWaypoint(_activeFP->waypoints[_activeFP->waypoints.size() - 1]->id)); } } } // Get the time to a given waypoint (spec'd by ID) in seconds. // returns -1 if groundspeed is less than 30kts. // If the waypoint is an unreached part of the active flight plan the time will be via each leg. // otherwise it will be a direct-to time. double DCLGPS::GetTimeToWaypoint(const string& id) { if(_groundSpeed_kts < 30.0) { return(-1.0); } double eta = 0.0; int n1 = GetActiveWaypointIndex(); int n2 = GetWaypointIndex(id); if(n2 > n1) { eta = _eta; for(unsigned int i=n1+1; i<_activeFP->waypoints.size(); ++i) { GPSWaypoint* wp1 = _activeFP->waypoints[i-1]; GPSWaypoint* wp2 = _activeFP->waypoints[i]; double distm = GetGreatCircleDistance(wp1->lat, wp1->lon, wp2->lat, wp2->lon) * SG_NM_TO_METER; eta += (distm / _groundSpeed_ms); } return(eta); } else if(id == _activeWaypoint.id) { return(_eta); } else { const GPSWaypoint* wp = FindFirstByExactId(id); if(wp == NULL) return(-1.0); double distm = GetGreatCircleDistance(_gpsLat, _gpsLon, wp->lat, wp->lon); delete wp; return(distm / _groundSpeed_ms); } return(-1.0); // Hopefully we never get here! } // Returns magnetic great-circle heading // TODO - document units. float DCLGPS::GetHeadingToActiveWaypoint() { if(_activeWaypoint.id.empty()) { return(-888); } else { double h = GetMagHeadingFromTo(_gpsLat, _gpsLon, _activeWaypoint.lat, _activeWaypoint.lon); while(h <= 0.0) h += 360.0; while(h > 360.0) h -= 360.0; return((float)h); } } // Returns magnetic great-circle heading // TODO - what units? float DCLGPS::GetHeadingFromActiveWaypoint() { if(_activeWaypoint.id.empty()) { return(-888); } else { double h = GetMagHeadingFromTo(_activeWaypoint.lat, _activeWaypoint.lon, _gpsLat, _gpsLon); while(h <= 0.0) h += 360.0; while(h > 360.0) h -= 360.0; return(h); } } void DCLGPS::ClearFlightPlan(int n) { for(unsigned int i=0; i<_flightPlans[n]->waypoints.size(); ++i) { delete _flightPlans[n]->waypoints[i]; } _flightPlans[n]->waypoints.clear(); } void DCLGPS::ClearFlightPlan(GPSFlightPlan* fp) { for(unsigned int i=0; i<fp->waypoints.size(); ++i) { delete fp->waypoints[i]; } fp->waypoints.clear(); } int DCLGPS::GetActiveWaypointIndex() { for(unsigned int i=0; i<_flightPlans[0]->waypoints.size(); ++i) { if(_flightPlans[0]->waypoints[i]->id == _activeWaypoint.id) return((int)i); } return(-1); } int DCLGPS::GetWaypointIndex(const string& id) { for(unsigned int i=0; i<_flightPlans[0]->waypoints.size(); ++i) { if(_flightPlans[0]->waypoints[i]->id == id) return((int)i); } return(-1); } void DCLGPS::OrientateToFlightPlan(GPSFlightPlan* fp) { //cout << "Orientating...\n"; //cout << "_lat = " << _lat << ", _lon = " << _lon << ", _gpsLat = " << _gpsLat << ", gpsLon = " << _gpsLon << '\n'; if(fp->IsEmpty()) { _activeWaypoint.id.clear(); _navFlagged = true; } else { _navFlagged = false; if(fp->waypoints.size() == 1) { // TODO - may need to flag nav here if not dto or obs, or possibly handle it somewhere else. _activeWaypoint = *fp->waypoints[0]; _fromWaypoint.id.clear(); } else { // FIXME FIXME FIXME _fromWaypoint = *fp->waypoints[0]; _activeWaypoint = *fp->waypoints[1]; double dmin = 1000000; // nm!! // For now we will simply start on the leg closest to our current position. // It's possible that more fancy algorithms may take either heading or track // into account when setting inital leg - I'm not sure. // This method should handle most cases perfectly OK though. for(unsigned int i = 1; i < fp->waypoints.size(); ++i) { //cout << "Pass " << i << ", dmin = " << dmin << ", leg is " << fp->waypoints[i-1]->id << " to " << fp->waypoints[i]->id << '\n'; // First get the cross track correction. double d0 = fabs(CalcCrossTrackDeviation(*fp->waypoints[i-1], *fp->waypoints[i])); // That is the shortest distance away we could be though - check for // longer distances if we are 'off the end' of the leg. double ht1 = GetGreatCircleCourse(fp->waypoints[i-1]->lat, fp->waypoints[i-1]->lon, fp->waypoints[i]->lat, fp->waypoints[i]->lon) * SG_RADIANS_TO_DEGREES; // not simply the reverse of the above due to great circle navigation. double ht2 = GetGreatCircleCourse(fp->waypoints[i]->lat, fp->waypoints[i]->lon, fp->waypoints[i-1]->lat, fp->waypoints[i-1]->lon) * SG_RADIANS_TO_DEGREES; double hw1 = GetGreatCircleCourse(_gpsLat, _gpsLon, fp->waypoints[i]->lat, fp->waypoints[i]->lon) * SG_RADIANS_TO_DEGREES; double hw2 = GetGreatCircleCourse(_gpsLat, _gpsLon, fp->waypoints[i-1]->lat, fp->waypoints[i-1]->lon) * SG_RADIANS_TO_DEGREES; double h1 = ht1 - hw1; double h2 = ht2 - hw2; //cout << "d0, h1, h2 = " << d0 << ", " << h1 << ", " << h2 << '\n'; //cout << "Normalizing...\n"; SG_NORMALIZE_RANGE(h1, -180.0, 180.0); SG_NORMALIZE_RANGE(h2, -180.0, 180.0); //cout << "d0, h1, h2 = " << d0 << ", " << h1 << ", " << h2 << '\n'; if(fabs(h1) > 90.0) { // We are past the end of the to waypoint double d = GetGreatCircleDistance(_gpsLat, _gpsLon, fp->waypoints[i]->lat, fp->waypoints[i]->lon); if(d > d0) d0 = d; //cout << "h1 triggered, d0 now = " << d0 << '\n'; } else if(fabs(h2) > 90.0) { // We are past the end (not yet at!) the from waypoint double d = GetGreatCircleDistance(_gpsLat, _gpsLon, fp->waypoints[i-1]->lat, fp->waypoints[i-1]->lon); if(d > d0) d0 = d; //cout << "h2 triggered, d0 now = " << d0 << '\n'; } if(d0 < dmin) { //cout << "THIS LEG NOW ACTIVE!\n"; dmin = d0; _fromWaypoint = *fp->waypoints[i-1]; _activeWaypoint = *fp->waypoints[i]; } } } } } void DCLGPS::OrientateToActiveFlightPlan() { OrientateToFlightPlan(_activeFP); } /***************************************/ // Utility function - create a flightplan from a list of waypoint ids and types void DCLGPS::CreateFlightPlan(GPSFlightPlan* fp, vector<string> ids, vector<GPSWpType> wps) { if(fp == NULL) fp = new GPSFlightPlan; unsigned int i; if(!fp->waypoints.empty()) { for(i=0; i<fp->waypoints.size(); ++i) { delete fp->waypoints[i]; } fp->waypoints.clear(); } if(ids.size() != wps.size()) { cout << "ID and Waypoint types list size mismatch in GPS::CreateFlightPlan - no flightplan created!\n"; return; } for(i=0; i<ids.size(); ++i) { bool multi; const FGAirport* ap; FGNavRecord* np; GPSWaypoint* wp = new GPSWaypoint; wp->type = wps[i]; switch(wp->type) { case GPS_WP_APT: ap = FindFirstAptById(ids[i], multi, true); if(ap == NULL) { // error delete wp; } else { wp->lat = ap->getLatitude() * SG_DEGREES_TO_RADIANS; wp->lon = ap->getLongitude() * SG_DEGREES_TO_RADIANS; wp->id = ids[i]; fp->waypoints.push_back(wp); } break; case GPS_WP_VOR: np = FindFirstVorById(ids[i], multi, true); if(np == NULL) { // error delete wp; } else { wp->lat = np->get_lat() * SG_DEGREES_TO_RADIANS; wp->lon = np->get_lon() * SG_DEGREES_TO_RADIANS; wp->id = ids[i]; fp->waypoints.push_back(wp); } break; case GPS_WP_NDB: np = FindFirstNDBById(ids[i], multi, true); if(np == NULL) { // error delete wp; } else { wp->lat = np->get_lat() * SG_DEGREES_TO_RADIANS; wp->lon = np->get_lon() * SG_DEGREES_TO_RADIANS; wp->id = ids[i]; fp->waypoints.push_back(wp); } break; case GPS_WP_INT: // TODO TODO break; case GPS_WP_USR: // TODO break; case GPS_WP_VIRT: // TODO break; } } } /***************************************/ class DCLGPSFilter : public FGPositioned::Filter { public: virtual bool pass(const FGPositioned* aPos) const { switch (aPos->type()) { case FGPositioned::AIRPORT: // how about heliports and seaports? case FGPositioned::NDB: case FGPositioned::VOR: case FGPositioned::WAYPOINT: case FGPositioned::FIX: break; default: return false; // reject all other types } return true; } }; GPSWaypoint* DCLGPS::FindFirstById(const string& id) const { DCLGPSFilter filter; FGPositionedRef result = FGPositioned::findNextWithPartialId(NULL, id, &filter); return GPSWaypoint::createFromPositioned(result); } GPSWaypoint* DCLGPS::FindFirstByExactId(const string& id) const { SGGeod pos(SGGeod::fromRad(_lon, _lat)); FGPositionedRef result = FGPositioned::findClosestWithIdent(id, pos); return GPSWaypoint::createFromPositioned(result); } // TODO - add the ASCII / alphabetical stuff from the Atlas version FGPositioned* DCLGPS::FindTypedFirstById(const string& id, FGPositioned::Type ty, bool &multi, bool exact) { multi = false; FGPositioned::TypeFilter filter(ty); if (exact) { FGPositioned::List matches = FGPositioned::findAllWithIdent(id, &filter); FGPositioned::sortByRange(matches, SGGeod::fromRad(_lon, _lat)); multi = (matches.size() > 1); return matches.empty() ? NULL : matches.front().ptr(); } return FGPositioned::findNextWithPartialId(NULL, id, &filter); } FGNavRecord* DCLGPS::FindFirstVorById(const string& id, bool &multi, bool exact) { return dynamic_cast<FGNavRecord*>(FindTypedFirstById(id, FGPositioned::VOR, multi, exact)); } FGNavRecord* DCLGPS::FindFirstNDBById(const string& id, bool &multi, bool exact) { return dynamic_cast<FGNavRecord*>(FindTypedFirstById(id, FGPositioned::NDB, multi, exact)); } const FGFix* DCLGPS::FindFirstIntById(const string& id, bool &multi, bool exact) { return dynamic_cast<FGFix*>(FindTypedFirstById(id, FGPositioned::FIX, multi, exact)); } const FGAirport* DCLGPS::FindFirstAptById(const string& id, bool &multi, bool exact) { return dynamic_cast<FGAirport*>(FindTypedFirstById(id, FGPositioned::AIRPORT, multi, exact)); } FGNavRecord* DCLGPS::FindClosestVor(double lat_rad, double lon_rad) { FGPositioned::TypeFilter filter(FGPositioned::VOR); double cutoff = 1000; // nautical miles FGPositionedRef v = FGPositioned::findClosest(SGGeod::fromRad(lon_rad, lat_rad), cutoff, &filter); if (!v) { return NULL; } return dynamic_cast<FGNavRecord*>(v.ptr()); } //---------------------------------------------------------------------------------------------------------- // Takes lat and lon in RADIANS!!!!!!! double DCLGPS::GetMagHeadingFromTo(double latA, double lonA, double latB, double lonB) { double h = GetGreatCircleCourse(latA, lonA, latB, lonB); h *= SG_RADIANS_TO_DEGREES; // TODO - use the real altitude below instead of 0.0! //cout << "MagVar = " << sgGetMagVar(_gpsLon, _gpsLat, 0.0, _time->getJD()) * SG_RADIANS_TO_DEGREES << '\n'; h -= sgGetMagVar(_gpsLon, _gpsLat, 0.0, _time->getJD()) * SG_RADIANS_TO_DEGREES; while(h >= 360.0) h -= 360.0; while(h < 0.0) h += 360.0; return(h); } // ---------------- Great Circle formulae from "The Aviation Formulary" ------------- // Note that all of these assume that the world is spherical. double Rad2Nm(double theta) { return(((180.0*60.0)/SG_PI)*theta); } double Nm2Rad(double d) { return((SG_PI/(180.0*60.0))*d); } /* QUOTE: The great circle distance d between two points with coordinates {lat1,lon1} and {lat2,lon2} is given by: d=acos(sin(lat1)*sin(lat2)+cos(lat1)*cos(lat2)*cos(lon1-lon2)) A mathematically equivalent formula, which is less subject to rounding error for short distances is: d=2*asin(sqrt((sin((lat1-lat2)/2))^2 + cos(lat1)*cos(lat2)*(sin((lon1-lon2)/2))^2)) */ // Returns distance in nm, takes lat & lon in RADIANS double DCLGPS::GetGreatCircleDistance(double lat1, double lon1, double lat2, double lon2) const { double d = 2.0 * asin(sqrt(((sin((lat1-lat2)/2.0))*(sin((lat1-lat2)/2.0))) + cos(lat1)*cos(lat2)*(sin((lon1-lon2)/2.0))*(sin((lon1-lon2)/2.0)))); return(Rad2Nm(d)); } // fmod dosen't do what we want :-( static double mod(double d1, double d2) { return(d1 - d2*floor(d1/d2)); } // Returns great circle course from point 1 to point 2 // Input and output in RADIANS. double DCLGPS::GetGreatCircleCourse (double lat1, double lon1, double lat2, double lon2) const { //double h = 0.0; /* // Special case the poles if(cos(lat1) < SG_EPSILON) { if(lat1 > 0) { // Starting from North Pole h = SG_PI; } else { // Starting from South Pole h = 2.0 * SG_PI; } } else { // Urgh - the formula below is for negative lon +ve !!!??? double d = GetGreatCircleDistance(lat1, lon1, lat2, lon2); cout << "d = " << d; d = Nm2Rad(d); //cout << ", d_theta = " << d; //cout << ", and d = " << Rad2Nm(d) << ' '; if(sin(lon2 - lon1) < 0) { cout << " A "; h = acos((sin(lat2)-sin(lat1)*cos(d))/(sin(d)*cos(lat1))); } else { cout << " B "; h = 2.0 * SG_PI - acos((sin(lat2)-sin(lat1)*cos(d))/(sin(d)*cos(lat1))); } } cout << h * SG_RADIANS_TO_DEGREES << '\n'; */ return( mod(atan2(sin(lon2-lon1)*cos(lat2), cos(lat1)*sin(lat2)-sin(lat1)*cos(lat2)*cos(lon2-lon1)), 2.0*SG_PI) ); } // Return a position on a radial from wp1 given distance d (nm) and magnetic heading h (degrees) // Note that d should be less that 1/4 Earth diameter! GPSWaypoint DCLGPS::GetPositionOnMagRadial(const GPSWaypoint& wp1, double d, double h) { h += sgGetMagVar(wp1.lon, wp1.lat, 0.0, _time->getJD()) * SG_RADIANS_TO_DEGREES; return(GetPositionOnRadial(wp1, d, h)); } // Return a position on a radial from wp1 given distance d (nm) and TRUE heading h (degrees) // Note that d should be less that 1/4 Earth diameter! GPSWaypoint DCLGPS::GetPositionOnRadial(const GPSWaypoint& wp1, double d, double h) { while(h < 0.0) h += 360.0; while(h > 360.0) h -= 360.0; h *= SG_DEGREES_TO_RADIANS; d *= (SG_PI / (180.0 * 60.0)); double lat=asin(sin(wp1.lat)*cos(d)+cos(wp1.lat)*sin(d)*cos(h)); double lon; if(cos(lat)==0) { lon=wp1.lon; // endpoint a pole } else { lon=mod(wp1.lon+asin(sin(h)*sin(d)/cos(lat))+SG_PI,2*SG_PI)-SG_PI; } GPSWaypoint wp; wp.lat = lat; wp.lon = lon; wp.type = GPS_WP_VIRT; return(wp); } // Returns cross-track deviation in Nm. double DCLGPS::CalcCrossTrackDeviation() const { return(CalcCrossTrackDeviation(_fromWaypoint, _activeWaypoint)); } // Returns cross-track deviation of the current position between two arbitary waypoints in nm. double DCLGPS::CalcCrossTrackDeviation(const GPSWaypoint& wp1, const GPSWaypoint& wp2) const { //if(wp1 == NULL || wp2 == NULL) return(0.0); if(wp1.id.empty() || wp2.id.empty()) return(0.0); double xtd = asin(sin(Nm2Rad(GetGreatCircleDistance(wp1.lat, wp1.lon, _gpsLat, _gpsLon))) * sin(GetGreatCircleCourse(wp1.lat, wp1.lon, _gpsLat, _gpsLon) - GetGreatCircleCourse(wp1.lat, wp1.lon, wp2.lat, wp2.lon))); return(Rad2Nm(xtd)); }