// MagicCarpet.cxx -- interface to the "Magic Carpet" flight model // // Written by Curtis Olson, started October 1999. // // Copyright (C) 1999 Curtis L. Olson - curt@flightgear.org // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. // // $Id$ #include #include #include #include #include
#include
#include "MagicCarpet.hxx" FGMagicCarpet::FGMagicCarpet( double dt ) { // set_delta_t( dt ); } FGMagicCarpet::~FGMagicCarpet() { } // Initialize the Magic Carpet flight model, dt is the time increment // for each subsequent iteration through the EOM void FGMagicCarpet::init() { common_init(); } // Run an iteration of the EOM (equations of motion) void FGMagicCarpet::update( double dt ) { // cout << "FGLaRCsim::update()" << endl; if (is_suspended()) return; int multiloop = _calc_multiloop(dt); double time_step = dt; // speed and distance traveled double speed = globals->get_controls()->get_throttle( 0 ) * 2000; // meters/sec if ( globals->get_controls()->get_brake_left() > 0.0 || globals->get_controls()->get_brake_right() > 0.0 ) { speed = -speed; } double dist = speed * time_step; double kts = speed * SG_METER_TO_NM * 3600.0; _set_V_equiv_kts( kts ); _set_V_calibrated_kts( kts ); _set_V_ground_speed( kts ); // angle of turn double turn_rate = globals->get_controls()->get_aileron() * SGD_PI_4; // radians/sec double turn = turn_rate * time_step; // update euler angles _set_Euler_Angles( get_Phi(), get_Theta(), fmod(get_Psi() + turn, SGD_2PI) ); _set_Euler_Rates(0,0,0); // update (lon/lat) position double lat2, lon2, az2; if ( fabs( speed ) > SG_EPSILON ) { geo_direct_wgs_84 ( get_Altitude(), get_Latitude() * SGD_RADIANS_TO_DEGREES, get_Longitude() * SGD_RADIANS_TO_DEGREES, get_Psi() * SGD_RADIANS_TO_DEGREES, dist, &lat2, &lon2, &az2 ); _set_Longitude( lon2 * SGD_DEGREES_TO_RADIANS ); _set_Latitude( lat2 * SGD_DEGREES_TO_RADIANS ); } // cout << "lon error = " << fabs(end.x()*SGD_RADIANS_TO_DEGREES - lon2) // << " lat error = " << fabs(end.y()*SGD_RADIANS_TO_DEGREES - lat2) // << endl; double sl_radius, lat_geoc; sgGeodToGeoc( get_Latitude(), get_Altitude(), &sl_radius, &lat_geoc ); // update altitude double real_climb_rate = -globals->get_controls()->get_elevator() * 5000; // feet/sec _set_Climb_Rate( real_climb_rate / 500.0 ); double climb = real_climb_rate * time_step; _set_Geocentric_Position( lat_geoc, get_Longitude(), sl_radius + get_Altitude() + climb ); // cout << "sea level radius (ft) = " << sl_radius << endl; // cout << "(setto) sea level radius (ft) = " << get_Sea_level_radius() << endl; _set_Sea_level_radius( sl_radius * SG_METER_TO_FEET); _set_Altitude( get_Altitude() + climb ); }