// obj.cxx -- routines to handle "sorta" WaveFront .obj format files. // // Written by Curtis Olson, started October 1997. // // Copyright (C) 1997 Curtis L. Olson - curt@infoplane.com // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. // // $Id$ #ifdef HAVE_CONFIG_H # include #endif #ifdef FG_MATH_EXCEPTION_CLASH # include #endif #include #include // #if defined ( __sun__ ) // extern "C" void *memmove(void *, const void *, size_t); // extern "C" void *memset(void *, int, size_t); // #endif #include #include STL_STRING #include // STL #include // STL #include // isdigit() #include #include #include #include
#include #include #include #include #include #include #include #include #include "materialmgr.hxx" #include "obj.hxx" FG_USING_STD(string); FG_USING_STD(vector); typedef vector < int > int_list; typedef int_list::iterator int_list_iterator; typedef int_list::const_iterator int_point_list_iterator; static double normals[FG_MAX_NODES][3]; static double tex_coords[FG_MAX_NODES*3][3]; // given three points defining a triangle, calculate the normal static void calc_normal(Point3D p1, Point3D p2, Point3D p3, double normal[3]) { double v1[3], v2[3]; double temp; v1[0] = p2[0] - p1[0]; v1[1] = p2[1] - p1[1]; v1[2] = p2[2] - p1[2]; v2[0] = p3[0] - p1[0]; v2[1] = p3[1] - p1[1]; v2[2] = p3[2] - p1[2]; MAT3cross_product(normal, v1, v2); MAT3_NORMALIZE_VEC(normal,temp); // fgPrintf( FG_TERRAIN, FG_DEBUG, " Normal = %.2f %.2f %.2f\n", // normal[0], normal[1], normal[2]); } #define FG_TEX_CONSTANT 69.0 // Calculate texture coordinates for a given point. static Point3D local_calc_tex_coords(const Point3D& node, const Point3D& ref) { Point3D cp; Point3D pp; // double tmplon, tmplat; // cout << "-> " << node[0] << " " << node[1] << " " << node[2] << endl; // cout << "-> " << ref.x() << " " << ref.y() << " " << ref.z() << endl; cp = Point3D( node[0] + ref.x(), node[1] + ref.y(), node[2] + ref.z() ); pp = fgCartToPolar3d(cp); // tmplon = pp.lon() * RAD_TO_DEG; // tmplat = pp.lat() * RAD_TO_DEG; // cout << tmplon << " " << tmplat << endl; pp.setx( fmod(RAD_TO_DEG * FG_TEX_CONSTANT * pp.x(), 11.0) ); pp.sety( fmod(RAD_TO_DEG * FG_TEX_CONSTANT * pp.y(), 11.0) ); if ( pp.x() < 0.0 ) { pp.setx( pp.x() + 11.0 ); } if ( pp.y() < 0.0 ) { pp.sety( pp.y() + 11.0 ); } // cout << pp << endl; return(pp); } // Generate a generic ocean tile on the fly ssgBranch *fgGenTile( const string& path, FGTileEntry *t) { fgFRAGMENT fragment; fragment.init(); fragment.tile_ptr = t; ssgSimpleState *state = NULL; ssgBranch *tile = new ssgBranch () ; tile -> setName ( (char *)path.c_str() ) ; // find Ocean material in the properties list if ( ! material_mgr.find( "Ocean", fragment.material_ptr )) { FG_LOG( FG_TERRAIN, FG_ALERT, "Ack! unknown usemtl name = " << "Ocean" << " in " << path ); } // set the texture width and height values for this // material FGMaterial m = fragment.material_ptr->get_m(); double tex_width = m.get_xsize(); double tex_height = m.get_ysize(); // set ssgState state = fragment.material_ptr->get_state(); // Calculate center point FGBucket b = t->tile_bucket; double clon = b.get_center_lon(); double clat = b.get_center_lat(); double height = b.get_height(); double width = b.get_width(); Point3D center = fgGeodToCart(Point3D(clon*DEG_TO_RAD,clat*DEG_TO_RAD,0.0)); t->center = center; fragment.center = center; // cout << "center = " << center << endl;; // Caculate corner vertices Point3D geod[4]; geod[0] = Point3D( clon - width/2.0, clat - height/2.0, 0.0 ); geod[1] = Point3D( clon + width/2.0, clat - height/2.0, 0.0 ); geod[2] = Point3D( clon + width/2.0, clat + height/2.0, 0.0 ); geod[3] = Point3D( clon - width/2.0, clat + height/2.0, 0.0 ); Point3D rad[4]; int i; for ( i = 0; i < 4; ++i ) { rad[i] = Point3D( geod[i].x() * DEG_TO_RAD, geod[i].y() * DEG_TO_RAD, geod[i].z() ); } Point3D cart[4], rel[4]; t->nodes.clear(); for ( i = 0; i < 4; ++i ) { cart[i] = fgGeodToCart(rad[i]); rel[i] = cart[i] - center; t->nodes.push_back( rel[i] ); // cout << "corner " << i << " = " << cart[i] << endl; } t->ncount = 4; // Calculate bounding radius t->bounding_radius = center.distance3D( cart[0] ); fragment.bounding_radius = t->bounding_radius; // cout << "bounding radius = " << t->bounding_radius << endl; // Calculate normals Point3D normals[4]; for ( i = 0; i < 4; ++i ) { normals[i] = cart[i]; double length = normals[i].distance3D( Point3D(0.0) ); normals[i] /= length; // cout << "normal = " << normals[i] << endl; } // Calculate texture coordinates point_list geod_nodes; geod_nodes.clear(); for ( i = 0; i < 4; ++i ) { geod_nodes.push_back( geod[i] ); } int_list rectangle; rectangle.clear(); for ( i = 0; i < 4; ++i ) { rectangle.push_back( i ); } point_list texs = calc_tex_coords( b, geod_nodes, rectangle, 1000.0 / tex_width ); // Build flight gear structure fragment.add_face(0, 1, 2); fragment.add_face(0, 2, 3); t->fragment_list.push_back(fragment); // Allocate ssg structure sgVec3 *vtlist = new sgVec3 [ 4 ]; t->vec3_ptrs.push_back( vtlist ); sgVec3 *vnlist = new sgVec3 [ 4 ]; t->vec3_ptrs.push_back( vnlist ); sgVec2 *tclist = new sgVec2 [ 4 ]; t->vec2_ptrs.push_back( tclist ); for ( i = 0; i < 4; ++i ) { sgSetVec3( vtlist[i], rel[i].x(), rel[i].y(), rel[i].z() ); sgSetVec3( vnlist[i], normals[i].x(), normals[i].y(), normals[i].z() ); sgSetVec2( tclist[i], texs[i].x(), texs[i].y() ); } unsigned short *vindex = new unsigned short [ 4 ]; t->index_ptrs.push_back( vindex ); unsigned short *tindex = new unsigned short [ 4 ]; t->index_ptrs.push_back( tindex ); for ( i = 0; i < 4; ++i ) { vindex[i] = i; tindex[i] = i; } ssgLeaf *leaf = new ssgVTable ( GL_TRIANGLE_FAN, 4, vindex, vtlist, 4, vindex, vnlist, 4, tindex, tclist, 0, NULL, NULL ) ; leaf->setState( state ); tile->addKid( leaf ); // if ( current_options.get_clouds() ) { // fgGenCloudTile(path, t, tile); // } return tile; } // Load a .obj file and build the fragment list ssgBranch *fgObjLoad( const string& path, FGTileEntry *t, const bool is_base) { fgFRAGMENT fragment; Point3D pp; double approx_normal[3] /*, normal[3], scale = 0.0 */; // double x, y, z, xmax, xmin, ymax, ymin, zmax, zmin; // GLfloat sgenparams[] = { 1.0, 0.0, 0.0, 0.0 }; // GLint display_list = 0; int shading; bool in_fragment = false, in_faces = false; int vncount, vtcount; int n1 = 0, n2 = 0, n3 = 0, n4 = 0; int tex; int last1 = 0, last2 = 0; bool odd = false; point_list nodes; Point3D node; Point3D center; double scenery_version = 0.0; double tex_width = 1000.0, tex_height = 1000.0; bool shared_done = false; int_list fan_vertices; int_list fan_tex_coords; int i; ssgSimpleState *state = NULL; sgVec3 *vtlist, *vnlist; sgVec2 *tclist; ssgBranch *tile = new ssgBranch () ; tile -> setName ( (char *)path.c_str() ) ; // Attempt to open "path.gz" or "path" fg_gzifstream in( path ); if ( ! in.is_open() ) { FG_LOG( FG_TERRAIN, FG_ALERT, "Cannot open file: " << path ); FG_LOG( FG_TERRAIN, FG_ALERT, "default to ocean tile: " << path ); return fgGenTile( path, t ); } shading = current_options.get_shading(); in_fragment = false; if ( is_base ) { t->ncount = 0; } vncount = 0; vtcount = 0; if ( is_base ) { t->bounding_radius = 0.0; } center = t->center; StopWatch stopwatch; stopwatch.start(); // ignore initial comments and blank lines. (priming the pump) // in >> skipcomment; // string line; string token; char c; #ifdef __MWERKS__ while ( in.get(c) && c != '\0' ) { in.putback(c); #else while ( ! in.eof() ) { #endif #if defined( MACOS ) in >> ::skipws; #else in >> skipws; #endif if ( in.get( c ) && c == '#' ) { // process a comment line // getline( in, line ); // cout << "comment = " << line << endl; in >> token; if ( token == "Version" ) { // read scenery versions number in >> scenery_version; // cout << "scenery_version = " << scenery_version << endl; } else if ( token == "gbs" ) { // reference point (center offset) if ( is_base ) { in >> t->center >> t->bounding_radius; } else { Point3D junk1; double junk2; in >> junk1 >> junk2; } center = t->center; // cout << "center = " << center // << " radius = " << t->bounding_radius << endl; } else if ( token == "bs" ) { // reference point (center offset) in >> fragment.center; in >> fragment.bounding_radius; // cout << "center = " << fragment.center // << " radius = " << fragment.bounding_radius << endl; } else if ( token == "usemtl" ) { // material property specification // if first usemtl with shared_done = false, then set // shared_done true and build the ssg shared lists if ( ! shared_done ) { // sanity check if ( (int)nodes.size() != vncount ) { FG_LOG( FG_TERRAIN, FG_ALERT, "Tile has mismatched nodes and normals: " << path ); // exit(-1); } shared_done = true; vtlist = new sgVec3 [ nodes.size() ]; t->vec3_ptrs.push_back( vtlist ); vnlist = new sgVec3 [ vncount ]; t->vec3_ptrs.push_back( vnlist ); tclist = new sgVec2 [ vtcount ]; t->vec2_ptrs.push_back( tclist ); for ( i = 0; i < (int)nodes.size(); ++i ) { sgSetVec3( vtlist[i], nodes[i][0], nodes[i][1], nodes[i][2] ); } for ( i = 0; i < vncount; ++i ) { sgSetVec3( vnlist[i], normals[i][0], normals[i][1], normals[i][2] ); } for ( i = 0; i < vtcount; ++i ) { sgSetVec2( tclist[i], tex_coords[i][0], tex_coords[i][1] ); } } // series of individual triangles // if ( in_faces ) { // xglEnd(); // } // this also signals the start of a new fragment if ( in_fragment ) { // close out the previous structure and start the next // xglEndList(); // printf("xglEnd(); xglEndList();\n"); // update fragment // fragment.display_list = display_list; // push this fragment onto the tile's object list t->fragment_list.push_back(fragment); } else { in_fragment = true; } // printf("start of fragment (usemtl)\n"); // display_list = xglGenLists(1); // xglNewList(display_list, GL_COMPILE); // printf("xglGenLists(); xglNewList();\n"); in_faces = false; // reset the existing face list // printf("cleaning a fragment with %d faces\n", // fragment.faces.size()); fragment.init(); // scan the material line string material; in >> material; fragment.tile_ptr = t; // find this material in the properties list if ( ! material_mgr.find( material, fragment.material_ptr )) { FG_LOG( FG_TERRAIN, FG_ALERT, "Ack! unknown usemtl name = " << material << " in " << path ); } // set the texture width and height values for this // material FGMaterial m = fragment.material_ptr->get_m(); tex_width = m.get_xsize(); tex_height = m.get_ysize(); state = fragment.material_ptr->get_state(); // cout << "(w) = " << tex_width << " (h) = " // << tex_width << endl; // initialize the fragment transformation matrix /* for ( i = 0; i < 16; i++ ) { fragment.matrix[i] = 0.0; } fragment.matrix[0] = fragment.matrix[5] = fragment.matrix[10] = fragment.matrix[15] = 1.0; */ } else { // unknown comment, just gobble the input untill the // end of line in >> skipeol; } } else { in.putback( c ); in >> token; // cout << "token = " << token << endl; if ( token == "vn" ) { // vertex normal if ( vncount < FG_MAX_NODES ) { in >> normals[vncount][0] >> normals[vncount][1] >> normals[vncount][2]; vncount++; } else { FG_LOG( FG_TERRAIN, FG_ALERT, "Read too many vertex normals in " << path << " ... dying :-(" ); exit(-1); } } else if ( token == "vt" ) { // vertex texture coordinate if ( vtcount < FG_MAX_NODES*3 ) { in >> tex_coords[vtcount][0] >> tex_coords[vtcount][1]; vtcount++; } else { FG_LOG( FG_TERRAIN, FG_ALERT, "Read too many vertex texture coords in " << path << " ... dying :-(" ); exit(-1); } } else if ( token == "v" ) { // node (vertex) if ( t->ncount < FG_MAX_NODES ) { /* in >> nodes[t->ncount][0] >> nodes[t->ncount][1] >> nodes[t->ncount][2]; */ in >> node; nodes.push_back(node); if ( is_base ) { t->ncount++; } } else { FG_LOG( FG_TERRAIN, FG_ALERT, "Read too many nodes in " << path << " ... dying :-("); exit(-1); } } else if ( token == "t" ) { // start a new triangle strip n1 = n2 = n3 = n4 = 0; // fgPrintf( FG_TERRAIN, FG_DEBUG, // " new tri strip = %s", line); in >> n1 >> n2 >> n3; fragment.add_face(n1, n2, n3); // fgPrintf( FG_TERRAIN, FG_DEBUG, "(t) = "); // xglBegin(GL_TRIANGLE_STRIP); // printf("xglBegin(tristrip) %d %d %d\n", n1, n2, n3); odd = true; // scale = 1.0; if ( shading ) { // Shading model is "GL_SMOOTH" so use precalculated // (averaged) normals // MAT3_SCALE_VEC(normal, normals[n1], scale); // xglNormal3dv(normal); pp = local_calc_tex_coords(nodes[n1], center); // xglTexCoord2f(pp.lon(), pp.lat()); // xglVertex3dv(nodes[n1].get_n()); // MAT3_SCALE_VEC(normal, normals[n2], scale); // xglNormal3dv(normal); pp = local_calc_tex_coords(nodes[n2], center); // xglTexCoord2f(pp.lon(), pp.lat()); // xglVertex3dv(nodes[n2].get_n()); // MAT3_SCALE_VEC(normal, normals[n3], scale); // xglNormal3dv(normal); pp = local_calc_tex_coords(nodes[n3], center); // xglTexCoord2f(pp.lon(), pp.lat()); // xglVertex3dv(nodes[n3].get_n()); } else { // Shading model is "GL_FLAT" so calculate per face // normals on the fly. if ( odd ) { calc_normal(nodes[n1], nodes[n2], nodes[n3], approx_normal); } else { calc_normal(nodes[n2], nodes[n1], nodes[n3], approx_normal); } // MAT3_SCALE_VEC(normal, approx_normal, scale); // xglNormal3dv(normal); pp = local_calc_tex_coords(nodes[n1], center); // xglTexCoord2f(pp.lon(), pp.lat()); // xglVertex3dv(nodes[n1].get_n()); pp = local_calc_tex_coords(nodes[n2], center); // xglTexCoord2f(pp.lon(), pp.lat()); // xglVertex3dv(nodes[n2].get_n()); pp = local_calc_tex_coords(nodes[n3], center); // xglTexCoord2f(pp.lon(), pp.lat()); // xglVertex3dv(nodes[n3].get_n()); } // printf("some normals, texcoords, and vertices\n"); odd = !odd; last1 = n2; last2 = n3; // There can be three or four values char c; while ( in.get(c) ) { if ( c == '\n' ) { break; // only the one } if ( isdigit(c) ){ in.putback(c); in >> n4; break; } } if ( n4 > 0 ) { fragment.add_face(n3, n2, n4); if ( shading ) { // Shading model is "GL_SMOOTH" // MAT3_SCALE_VEC(normal, normals[n4], scale); } else { // Shading model is "GL_FLAT" calc_normal(nodes[n3], nodes[n2], nodes[n4], approx_normal); // MAT3_SCALE_VEC(normal, approx_normal, scale); } // xglNormal3dv(normal); pp = local_calc_tex_coords(nodes[n4], center); // xglTexCoord2f(pp.lon(), pp.lat()); // xglVertex3dv(nodes[n4].get_n()); odd = !odd; last1 = n3; last2 = n4; // printf("a normal, texcoord, and vertex (4th)\n"); } } else if ( (token == "tf") || (token == "ts") ) { // triangle fan // fgPrintf( FG_TERRAIN, FG_DEBUG, "new fan"); fan_vertices.clear(); fan_tex_coords.clear(); odd = true; // xglBegin(GL_TRIANGLE_FAN); in >> n1; fan_vertices.push_back( n1 ); // xglNormal3dv(normals[n1]); if ( in.get( c ) && c == '/' ) { in >> tex; fan_tex_coords.push_back( tex ); if ( scenery_version >= 0.4 ) { if ( tex_width > 0 ) { tclist[tex][0] *= (1000.0 / tex_width); } if ( tex_height > 0 ) { tclist[tex][1] *= (1000.0 / tex_height); } } pp.setx( tex_coords[tex][0] * (1000.0 / tex_width) ); pp.sety( tex_coords[tex][1] * (1000.0 / tex_height) ); } else { in.putback( c ); pp = local_calc_tex_coords(nodes[n1], center); } // xglTexCoord2f(pp.x(), pp.y()); // xglVertex3dv(nodes[n1].get_n()); in >> n2; fan_vertices.push_back( n2 ); // xglNormal3dv(normals[n2]); if ( in.get( c ) && c == '/' ) { in >> tex; fan_tex_coords.push_back( tex ); if ( scenery_version >= 0.4 ) { if ( tex_width > 0 ) { tclist[tex][0] *= (1000.0 / tex_width); } if ( tex_height > 0 ) { tclist[tex][1] *= (1000.0 / tex_height); } } pp.setx( tex_coords[tex][0] * (1000.0 / tex_width) ); pp.sety( tex_coords[tex][1] * (1000.0 / tex_height) ); } else { in.putback( c ); pp = local_calc_tex_coords(nodes[n2], center); } // xglTexCoord2f(pp.x(), pp.y()); // xglVertex3dv(nodes[n2].get_n()); // read all subsequent numbers until next thing isn't a number while ( true ) { #if defined( MACOS ) in >> ::skipws; #else in >> skipws; #endif char c; in.get(c); in.putback(c); if ( ! isdigit(c) || in.eof() ) { break; } in >> n3; fan_vertices.push_back( n3 ); // cout << " triangle = " // << n1 << "," << n2 << "," << n3 // << endl; // xglNormal3dv(normals[n3]); if ( in.get( c ) && c == '/' ) { in >> tex; fan_tex_coords.push_back( tex ); if ( scenery_version >= 0.4 ) { if ( tex_width > 0 ) { tclist[tex][0] *= (1000.0 / tex_width); } if ( tex_height > 0 ) { tclist[tex][1] *= (1000.0 / tex_height); } } pp.setx( tex_coords[tex][0] * (1000.0 / tex_width) ); pp.sety( tex_coords[tex][1] * (1000.0 / tex_height) ); } else { in.putback( c ); pp = local_calc_tex_coords(nodes[n3], center); } // xglTexCoord2f(pp.x(), pp.y()); // xglVertex3dv(nodes[n3].get_n()); if ( token == "tf" ) { // triangle fan fragment.add_face(n1, n2, n3); n2 = n3; } else { // triangle strip if ( odd ) { fragment.add_face(n1, n2, n3); } else { fragment.add_face(n2, n1, n3); } odd = !odd; n1 = n2; n2 = n3; } } // xglEnd(); // build the ssg entity unsigned short *vindex = new unsigned short [ fan_vertices.size() ]; t->index_ptrs.push_back( vindex ); unsigned short *tindex = new unsigned short [ fan_tex_coords.size() ]; t->index_ptrs.push_back( tindex ); for ( i = 0; i < (int)fan_vertices.size(); ++i ) { vindex[i] = fan_vertices[i]; } for ( i = 0; i < (int)fan_tex_coords.size(); ++i ) { tindex[i] = fan_tex_coords[i]; } ssgLeaf *leaf; if ( token == "tf" ) { // triangle fan leaf = new ssgVTable ( GL_TRIANGLE_FAN, fan_vertices.size(), vindex, vtlist, fan_vertices.size(), vindex, vnlist, fan_tex_coords.size(), tindex, tclist, 0, NULL, NULL ) ; } else { // triangle strip leaf = new ssgVTable ( GL_TRIANGLE_STRIP, fan_vertices.size(), vindex, vtlist, fan_vertices.size(), vindex, vnlist, fan_tex_coords.size(), tindex, tclist, 0, NULL, NULL ) ; } leaf->setState( state ); tile->addKid( leaf ); } else if ( token == "f" ) { // unoptimized face if ( !in_faces ) { // xglBegin(GL_TRIANGLES); // printf("xglBegin(triangles)\n"); in_faces = true; } // fgPrintf( FG_TERRAIN, FG_DEBUG, "new triangle = %s", line);*/ in >> n1 >> n2 >> n3; fragment.add_face(n1, n2, n3); // xglNormal3d(normals[n1][0], normals[n1][1], normals[n1][2]); // xglNormal3dv(normals[n1]); pp = local_calc_tex_coords(nodes[n1], center); // xglTexCoord2f(pp.lon(), pp.lat()); // xglVertex3dv(nodes[n1].get_n()); // xglNormal3dv(normals[n2]); pp = local_calc_tex_coords(nodes[n2], center); // xglTexCoord2f(pp.lon(), pp.lat()); // xglVertex3dv(nodes[n2].get_n()); // xglNormal3dv(normals[n3]); pp = local_calc_tex_coords(nodes[n3], center); // xglTexCoord2f(pp.lon(), pp.lat()); // xglVertex3dv(nodes[n3].get_n()); // printf("some normals, texcoords, and vertices (tris)\n"); } else if ( token == "q" ) { // continue a triangle strip n1 = n2 = 0; // fgPrintf( FG_TERRAIN, FG_DEBUG, "continued tri strip = %s ", // line); in >> n1; // There can be one or two values char c; while ( in.get(c) ) { if ( c == '\n' ) { break; // only the one } if ( isdigit(c) ) { in.putback(c); in >> n2; break; } } // fgPrintf( FG_TERRAIN, FG_DEBUG, "read %d %d\n", n1, n2); if ( odd ) { fragment.add_face(last1, last2, n1); } else { fragment.add_face(last2, last1, n1); } if ( shading ) { // Shading model is "GL_SMOOTH" // MAT3_SCALE_VEC(normal, normals[n1], scale); } else { // Shading model is "GL_FLAT" if ( odd ) { calc_normal(nodes[last1], nodes[last2], nodes[n1], approx_normal); } else { calc_normal(nodes[last2], nodes[last1], nodes[n1], approx_normal); } // MAT3_SCALE_VEC(normal, approx_normal, scale); } // xglNormal3dv(normal); pp = local_calc_tex_coords(nodes[n1], center); // xglTexCoord2f(pp.lon(), pp.lat()); // xglVertex3dv(nodes[n1].get_n()); // printf("a normal, texcoord, and vertex (4th)\n"); odd = !odd; last1 = last2; last2 = n1; if ( n2 > 0 ) { // fgPrintf( FG_TERRAIN, FG_DEBUG, " (cont)\n"); if ( odd ) { fragment.add_face(last1, last2, n2); } else { fragment.add_face(last2, last1, n2); } if ( shading ) { // Shading model is "GL_SMOOTH" // MAT3_SCALE_VEC(normal, normals[n2], scale); } else { // Shading model is "GL_FLAT" if ( odd ) { calc_normal(nodes[last1], nodes[last2], nodes[n2], approx_normal); } else { calc_normal(nodes[last2], nodes[last1], nodes[n2], approx_normal); } // MAT3_SCALE_VEC(normal, approx_normal, scale); } // xglNormal3dv(normal); pp = local_calc_tex_coords(nodes[n2], center); // xglTexCoord2f(pp.lon(), pp.lat()); // xglVertex3dv(nodes[n2].get_n()); // printf("a normal, texcoord, and vertex (4th)\n"); odd = !odd; last1 = last2; last2 = n2; } } else { FG_LOG( FG_TERRAIN, FG_WARN, "Unknown token in " << path << " = " << token ); } // eat white space before start of while loop so if we are // done with useful input it is noticed before hand. #if defined( MACOS ) in >> ::skipws; #else in >> skipws; #endif } } if ( in_fragment ) { // close out the previous structure and start the next // xglEnd(); // xglEndList(); // printf("xglEnd(); xglEndList();\n"); // update fragment // fragment.display_list = display_list; // push this fragment onto the tile's object list t->fragment_list.push_back(fragment); } #if 0 // Draw normal vectors (for visually verifying normals) xglBegin(GL_LINES); xglColor3f(0.0, 0.0, 0.0); for ( i = 0; i < t->ncount; i++ ) { xglVertex3d(nodes[i][0], nodes[i][1] , nodes[i][2]); xglVertex3d(nodes[i][0] + 500*normals[i][0], nodes[i][1] + 500*normals[i][1], nodes[i][2] + 500*normals[i][2]); } xglEnd(); #endif if ( is_base ) { t->nodes = nodes; } stopwatch.stop(); FG_LOG( FG_TERRAIN, FG_DEBUG, "Loaded " << path << " in " << stopwatch.elapsedSeconds() << " seconds" ); // Generate a cloud layer above the tiles // if ( current_options.get_clouds() ) { // fgGenCloudTile(path, t, tile); // } return tile; }