// FGAIBallistic - FGAIBase-derived class creates a ballistic object // // Written by David Culp, started November 2003. // - davidculp2@comcast.net // // With major additions by Mathias Froehlich & Vivian Meazza 2004-2008 // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. #ifdef HAVE_CONFIG_H # include #endif #include #include #include #include #include "AIBallistic.hxx" #include
using namespace simgear; const double FGAIBallistic::slugs_to_kgs = 14.5939029372; const double FGAIBallistic::slugs_to_lbs = 32.1740485564; FGAIBallistic::FGAIBallistic(object_type ot) : FGAIBase(ot), _height(0.0), _ht_agl_ft(0.0), _azimuth(0.0), _elevation(0.0), _rotation(0.0), _formate_to_ac(false), _aero_stabilised(false), _drag_area(0.007), _life_timer(0.0), _gravity(32.1740485564), _buoyancy(0), _wind(true), _mass(0), _random(false), _load_resistance(0), _solid(false), _force_stabilised(false), _slave_to_ac(false), _slave_load_to_ac(false), _contents_lb(0), _report_collision(false), _report_expiry(false), _report_impact(false), _external_force(false), _impact_report_node(fgGetNode("/ai/models/model-impact", true)), _old_height(0), _elapsed_time(0), hs(0) { no_roll = false; } FGAIBallistic::~FGAIBallistic() { } void FGAIBallistic::readFromScenario(SGPropertyNode* scFileNode) { if (!scFileNode){ return; } FGAIBase::readFromScenario(scFileNode); //setPath(scFileNode->getStringValue("model", "Models/Geometry/rocket.ac")); setRandom(scFileNode->getBoolValue("random", false)); setAzimuth(scFileNode->getDoubleValue("azimuth", 0.0)); setElevation(scFileNode->getDoubleValue("elevation", 0)); setDragArea(scFileNode->getDoubleValue("eda", 0.007)); setLife(scFileNode->getDoubleValue("life", 900.0)); setBuoyancy(scFileNode->getDoubleValue("buoyancy", 0)); //setWind_from_east(scFileNode->getDoubleValue("wind_from_east", 0)); //setWind_from_north(scFileNode->getDoubleValue("wind_from_north", 0)); setWind(scFileNode->getBoolValue("wind", false)); setRoll(scFileNode->getDoubleValue("roll", 0.0)); setCd(scFileNode->getDoubleValue("cd", 0.029)); //setMass(scFileNode->getDoubleValue("mass", 0.007)); setWeight(scFileNode->getDoubleValue("weight", 0.25)); setStabilisation(scFileNode->getBoolValue("aero-stabilised", false)); setNoRoll(scFileNode->getBoolValue("no-roll", false)); setImpact(scFileNode->getBoolValue("impact", false)); setExpiry(scFileNode->getBoolValue("expiry", false)); setCollision(scFileNode->getBoolValue("collision", false)); setImpactReportNode(scFileNode->getStringValue("impact-reports")); setName(scFileNode->getStringValue("name", "Rocket")); setFuseRange(scFileNode->getDoubleValue("fuse-range", 0.0)); setSMPath(scFileNode->getStringValue("submodel-path", "")); setSubID(scFileNode->getIntValue("SubID", 0)); setExternalForce(scFileNode->getBoolValue("external-force", false)); setForcePath(scFileNode->getStringValue("force-path", "")); setForceStabilisation(scFileNode->getBoolValue("force-stabilised", false)); setXoffset(scFileNode->getDoubleValue("x-offset", 0.0)); setYoffset(scFileNode->getDoubleValue("y-offset", 0.0)); setZoffset(scFileNode->getDoubleValue("z-offset", 0.0)); setPitchoffset(scFileNode->getDoubleValue("pitch-offset", 0.0)); setRolloffset(scFileNode->getDoubleValue("roll-offset", 0.0)); setYawoffset(scFileNode->getDoubleValue("yaw-offset", 0.0)); setGroundOffset(scFileNode->getDoubleValue("ground-offset", 0.0)); setLoadOffset(scFileNode->getDoubleValue("load-offset", 0.0)); setSlaved(scFileNode->getBoolValue("slaved", false)); setSlavedLoad(scFileNode->getBoolValue("slaved-load", false)); setContentsPath(scFileNode->getStringValue("contents")); setParentName(scFileNode->getStringValue("parent")); } bool FGAIBallistic::init(bool search_in_AI_path) { FGAIBase::init(search_in_AI_path); _impact_reported = false; _collision_reported = false; _expiry_reported = false; _impact_lat = 0; _impact_lon = 0; _impact_elev = 0; _impact_hdg = 0; _impact_pitch = 0; _impact_roll = 0; _impact_speed = 0; invisible = false; _elapsed_time += (sg_random() * 100); props->setStringValue("material/name", ""); props->setStringValue("name", _name.c_str()); props->setStringValue("submodels/path", _path.c_str()); if (_slave_to_ac){ props->setStringValue("force/path", _force_path.c_str()); props->setStringValue("contents/path", _contents_path.c_str()); } if(_parent != ""){ setParentNode(); } setParentNodes(_selected_ac); //props->setStringValue("vector/path", _vector_path.c_str()); // start with high value so that animations don't trigger yet _ht_agl_ft = 1e10; hdg = _azimuth; pitch = _elevation; roll = _rotation; Transform(); //cout << _name << " speed init: " << speed << endl; return true; } void FGAIBallistic::bind() { // FGAIBase::bind(); props->tie("sim/time/elapsed-sec", SGRawValueMethods(*this, &FGAIBallistic::_getTime)); //props->tie("mass-slug", // SGRawValueMethods(*this, // &FGAIBallistic::getMass)); props->tie("material/solid", SGRawValuePointer(&_solid)); props->tie("altitude-agl-ft", SGRawValuePointer(&_ht_agl_ft)); props->tie("controls/slave-to-ac", SGRawValueMethods (*this, &FGAIBallistic::getSlaved, &FGAIBallistic::setSlaved)); props->tie("controls/invisible", SGRawValuePointer(&invisible)); if(_external_force || _slave_to_ac){ props->tie("controls/force_stabilized", SGRawValuePointer(&_force_stabilised)); props->tie("position/global-x", SGRawValueMethods(*this, &FGAIBase::_getCartPosX, 0)); props->tie("position/global-y", SGRawValueMethods(*this, &FGAIBase::_getCartPosY, 0)); props->tie("position/global-z", SGRawValueMethods(*this, &FGAIBase::_getCartPosZ, 0)); props->tie("velocities/vertical-speed-fps", SGRawValuePointer(&vs)); props->tie("velocities/true-airspeed-kt", SGRawValuePointer(&speed)); props->tie("velocities/horizontal-speed-fps", SGRawValuePointer(&hs)); props->tie("position/altitude-ft", SGRawValueMethods(*this, &FGAIBase::_getElevationFt, &FGAIBase::_setAltitude)); props->tie("position/latitude-deg", SGRawValueMethods(*this, &FGAIBase::_getLatitude, &FGAIBase::_setLatitude)); props->tie("position/longitude-deg", SGRawValueMethods(*this, &FGAIBase::_getLongitude, &FGAIBase::_setLongitude)); props->tie("orientation/hdg-deg", SGRawValuePointer(&hdg)); props->tie("orientation/pitch-deg", SGRawValuePointer(&pitch)); props->tie("orientation/roll-deg", SGRawValuePointer(&roll)); props->tie("controls/slave-load-to-ac", SGRawValueMethods (*this, &FGAIBallistic::getSlavedLoad, &FGAIBallistic::setSlavedLoad)); props->tie("position/load-offset", SGRawValueMethods (*this, &FGAIBallistic::getLoadOffset, &FGAIBallistic::setLoadOffset)); props->tie("load/distance-to-hitch-ft", SGRawValueMethods (*this, &FGAIBallistic::getDistanceLoadToHitch)); props->tie("load/elevation-to-hitch-deg", SGRawValueMethods (*this, &FGAIBallistic::getElevLoadToHitch)); props->tie("load/bearing-to-hitch-deg", SGRawValueMethods (*this, &FGAIBallistic::getBearingLoadToHitch)); props->tie("material/load-resistance", SGRawValuePointer(&_load_resistance)); } } void FGAIBallistic::unbind() { // FGAIBase::unbind(); props->untie("sim/time/elapsed-sec"); props->untie("mass-slug"); props->untie("material/solid"); props->untie("altitude-agl-ft"); props->untie("controls/slave-to-ac"); props->untie("controls/invisible"); if(_external_force || _slave_to_ac){ props->untie("position/global-y"); props->untie("position/global-x"); props->untie("position/global-z"); props->untie("velocities/vertical-speed-fps"); props->untie("velocities/true-airspeed-kt"); props->untie("velocities/horizontal-speed-fps"); props->untie("position/altitude-ft"); props->untie("position/latitude-deg"); props->untie("position/longitude-deg"); props->untie("position/ht-agl-ft"); props->untie("orientation/hdg-deg"); props->untie("orientation/pitch-deg"); props->untie("orientation/roll-deg"); props->untie("controls/force_stabilized"); props->untie("position/load-offset"); props->untie("load/distance-to-hitch-ft"); props->untie("load/elevation-to-hitch-deg"); props->untie("load/bearing-to-hitch-deg"); props->untie("material/load-resistance"); } } void FGAIBallistic::update(double dt) { FGAIBase::update(dt); _setUserPos(); if (_formate_to_ac){ formateToAC(dt); Transform(); } else if (_slave_to_ac){ slaveToAC(dt); Transform(); } else if (!invisible){ Run(dt); Transform(); } } void FGAIBallistic::setAzimuth(double az) { if (_random) hdg = _azimuth = (az - 5 ) + (10 * sg_random()); else hdg = _azimuth = az; //cout << _name << " init hdg " << hdg << " random " << _random << endl; } void FGAIBallistic::setElevation(double el) { pitch = _elevation = el; } void FGAIBallistic::setRoll(double rl) { roll = _rotation = rl; } void FGAIBallistic::setStabilisation(bool val) { _aero_stabilised = val; } void FGAIBallistic::setForceStabilisation(bool val) { _force_stabilised = val; } void FGAIBallistic::setNoRoll(bool nr) { no_roll = nr; } void FGAIBallistic::setDragArea(double a) { _drag_area = a; } void FGAIBallistic::setLife(double seconds) { if (_random){ life = seconds * _randomness + (seconds * (1 -_randomness) * sg_random()); //cout << "life " << life << endl; } else life = seconds; } void FGAIBallistic::setBuoyancy(double fpss) { _buoyancy = fpss; } void FGAIBallistic::setWind_from_east(double fps) { _wind_from_east = fps; } void FGAIBallistic::setWind_from_north(double fps) { _wind_from_north = fps; } void FGAIBallistic::setWind(bool val) { _wind = val; } void FGAIBallistic::setCd(double c) { _Cd = c; } void FGAIBallistic::setMass(double m) { _mass = m; } void FGAIBallistic::setWeight(double w) { _weight_lb = w; } void FGAIBallistic::setRandomness(double r) { _randomness = r; } void FGAIBallistic::setRandom(bool r) { _random = r; } void FGAIBallistic::setImpact(bool i) { _report_impact = i; } void FGAIBallistic::setCollision(bool c) { _report_collision = c; } void FGAIBallistic::setExpiry(bool e) { _report_expiry = e; } void FGAIBallistic::setExternalForce(bool f) { _external_force = f; } void FGAIBallistic::setImpactReportNode(const string& path) { if (!path.empty()) _impact_report_node = fgGetNode(path.c_str(), true); } void FGAIBallistic::setSMPath(const string& s) { _path = s; //cout << "submodel path " << _path << endl; } void FGAIBallistic::setFuseRange(double f) { _fuse_range = f; } void FGAIBallistic::setSubID(int i) { _subID = i; } void FGAIBallistic::setSubmodel(const string& s) { _submodel = s; } void FGAIBallistic::setGroundOffset(double g) { _ground_offset = g; } void FGAIBallistic::setLoadOffset(double l) { _load_offset = l; } double FGAIBallistic::getLoadOffset() const { return _load_offset; } void FGAIBallistic::setSlaved(bool s) { _slave_to_ac = s; } void FGAIBallistic::setFormate(bool f) { _formate_to_ac = f; } void FGAIBallistic::setContentsPath(const string& path) { _contents_path = path; if (!path.empty()) { _contents_node = fgGetNode(path.c_str(), true); } } void FGAIBallistic::setContentsNode(SGPropertyNode_ptr node) { if (node != 0) { _contents_node = node; _contents_path = _contents_node->getDisplayName(); } } void FGAIBallistic::setParentNodes(SGPropertyNode_ptr node) { if (node != 0) { _pnode = node; _p_pos_node = _pnode->getChild("position", 0, true); _p_lat_node = _p_pos_node->getChild("latitude-deg", 0, true); _p_lon_node = _p_pos_node->getChild("longitude-deg", 0, true); _p_alt_node = _p_pos_node->getChild("altitude-ft", 0, true); _p_agl_node = _p_pos_node->getChild("altitude-agl-ft", 0, true); _p_ori_node = _pnode->getChild("orientation", 0, true); _p_pch_node = _p_ori_node->getChild("pitch-deg", 0, true); _p_rll_node = _p_ori_node->getChild("roll-deg", 0, true); _p_hdg_node = _p_ori_node->getChild("true-heading-deg",0, true); _p_vel_node = _pnode->getChild("velocities", 0, true); _p_spd_node = _p_vel_node->getChild("true-airspeed-kt", 0, true); } } void FGAIBallistic::setParentPos() { if (_pnode != 0) { double lat = _p_lat_node->getDoubleValue(); double lon = _p_lon_node->getDoubleValue(); double alt = _p_alt_node->getDoubleValue(); _parentpos.setLongitudeDeg(lon); _parentpos.setLatitudeDeg(lat); _parentpos.setElevationFt(alt); } } bool FGAIBallistic::getSlaved() const { return _slave_to_ac; } bool FGAIBallistic::getFormate() const { return _formate_to_ac; } double FGAIBallistic::getMass() const { return _mass; } double FGAIBallistic::getContents() { if(_contents_node){ _contents_lb = _contents_node->getChild("level-lbs",0,1)->getDoubleValue(); } return _contents_lb; } void FGAIBallistic::setContents(double c) { if(_contents_node) _contents_lb = _contents_node->getChild("level-gal_us",0,1)->setDoubleValue(c); } void FGAIBallistic::setSlavedLoad(bool l) { _slave_load_to_ac = l; } bool FGAIBallistic::getSlavedLoad() const { return _slave_load_to_ac; } void FGAIBallistic::setForcePath(const string& p) { _force_path = p; if (!_force_path.empty()) { SGPropertyNode *fnode = fgGetNode(_force_path.c_str(), 0, true ); _force_node = fnode->getChild("force-lb", 0, true); _force_azimuth_node = fnode->getChild("force-azimuth-deg", 0, true); _force_elevation_node = fnode->getChild("force-elevation-deg", 0, true); } } bool FGAIBallistic::getHtAGL(double start){ if (getGroundElevationM(SGGeod::fromGeodM(pos, start), _elevation_m, &_material)) { _ht_agl_ft = pos.getElevationFt() - _elevation_m * SG_METER_TO_FEET; if (_material) { const vector& names = _material->get_names(); _solid = _material->get_solid(); _load_resistance = _material->get_load_resistance(); _frictionFactor =_material->get_friction_factor(); if (!names.empty()) props->setStringValue("material/name", names[0].c_str()); else props->setStringValue("material/name", ""); _mat_name = names[0]; //cout << "material " << _mat_name //<< " solid " << _solid //<< " load " << _load_resistance //<< " frictionFactor " << _frictionFactor //<< endl; } return true; } else { return false; } } double FGAIBallistic::getRecip(double az){ // calculate the reciprocal of the input azimuth if(az - 180 < 0){ return az + 180; } else { return az - 180; } } void FGAIBallistic::setPch(double e, double dt, double coeff){ double c = dt / (coeff + dt); pitch = (e * c) + (pitch * (1 - c)); } void FGAIBallistic::setBnk(double r, double dt, double coeff){ double c = dt / (coeff + dt); roll = (r * c) + (roll * (1 - c)); } void FGAIBallistic::setHt(double h, double dt, double coeff){ double c = dt / (coeff + dt); _height = (h * c) + (_height * (1 - c)); } void FGAIBallistic::setHdg(double az, double dt, double coeff){ double recip = getRecip(hdg); double c = dt / (coeff + dt); //we need to ensure that we turn the short way to the new hdg if (az < recip && az < hdg && hdg > 180) { hdg = ((az + 360) * c) + (hdg * (1 - c)); } else if (az > recip && az > hdg && hdg <= 180){ hdg = ((az - 360) * c) + (hdg * (1 - c)); } else { hdg = (az * c) + (hdg * (1 - c)); } } double FGAIBallistic::getTgtXOffset() const { return _tgt_x_offset; } double FGAIBallistic::getTgtYOffset() const { return _tgt_y_offset; } double FGAIBallistic::getTgtZOffset() const { return _tgt_z_offset; } void FGAIBallistic::setTgtXOffset(double x){ _tgt_x_offset = x; } void FGAIBallistic::setTgtYOffset(double y){ _tgt_y_offset = y; } void FGAIBallistic::setTgtZOffset(double z){ _tgt_z_offset = z; } void FGAIBallistic::slaveToAC(double dt){ double hdg, pch, rll, agl = 0; if (_pnode != 0) { setParentPos(); hdg = _p_hdg_node->getDoubleValue(); pch = _p_pch_node->getDoubleValue(); rll = _p_rll_node->getDoubleValue(); agl = _p_agl_node->getDoubleValue(); setOffsetPos(_parentpos, hdg, pch, rll); setSpeed(_p_spd_node->getDoubleValue()); }else { hdg = manager->get_user_heading(); pch = manager->get_user_pitch(); rll = manager->get_user_roll(); agl = manager->get_user_agl(); setOffsetPos(userpos, hdg, pch, rll); setSpeed(manager->get_user_speed()); } pos.setLatitudeDeg(_offsetpos.getLatitudeDeg()); pos.setLongitudeDeg(_offsetpos.getLongitudeDeg()); pos.setElevationFt(_offsetpos.getElevationFt()); setHeading(hdg); setPitch(pch + _pitch_offset); setBank(rll + _roll_offset); setOffsetVelocity(dt, pos); //update the mass (slugs) _mass = (_weight_lb + getContents()) / slugs_to_lbs; _impact_reported = false; //cout << _name << " _mass "<<_mass <<" " << getContents() //<< " " << getContents() / slugs_to_lbs << " weight " << _weight_lb << endl; // cout << _name << " update hs " << hs << " vs " << vs << endl; } void FGAIBallistic::Run(double dt) { _life_timer += dt; // if life = -1 the object does not die if (_life_timer > life && life != -1){ if (_report_expiry && !_expiry_reported && !_impact_reported && !_collision_reported){ //cout<<"AIBallistic: expiry"<< endl; handle_expiry(); } else setDie(true); } //set the contents in the appropriate tank or other property in the parent to zero setContents(0); //randomise Cd by +- 10% if (_random) _Cd = _Cd * 0.90 + (0.10 * sg_random()); // Adjust Cd by Mach number. The equations are based on curves // for a conventional shell/bullet (no boat-tail). double Cdm; if (Mach < 0.7) Cdm = 0.0125 * Mach + _Cd; else if (Mach < 1.2 ) Cdm = 0.3742 * pow(Mach, 2) - 0.252 * Mach + 0.0021 + _Cd; else Cdm = 0.2965 * pow(Mach, -1.1506) + _Cd; //cout <<_name << " Mach " << Mach << " Cdm " << Cdm // << " ballistic speed kts "<< speed << endl; // drag = Cd * 0.5 * rho * speed * speed * drag_area; // rho is adjusted for altitude in void FGAIBase::update, // using Standard Atmosphere (sealevel temperature 15C) // acceleration = drag/mass; // adjust speed by drag speed -= (Cdm * 0.5 * rho * speed * speed * _drag_area/_mass) * dt; // don't let speed become negative if ( speed < 0.0 ) speed = 0.0; double speed_fps = speed * SG_KT_TO_FPS; //double hs; // calculate vertical and horizontal speed components if (speed == 0.0) { hs = vs = 0.0; } else { vs = sin( _elevation * SG_DEGREES_TO_RADIANS ) * speed_fps; hs = cos( _elevation * SG_DEGREES_TO_RADIANS ) * speed_fps; } //resolve horizontal speed into north and east components: double speed_north_fps = cos(_azimuth / SG_RADIANS_TO_DEGREES) * hs; double speed_east_fps = sin(_azimuth / SG_RADIANS_TO_DEGREES) * hs; // convert horizontal speed (fps) to degrees per second double speed_north_deg_sec = speed_north_fps / ft_per_deg_lat; double speed_east_deg_sec = speed_east_fps / ft_per_deg_lon; // if wind not required, set to zero if (!_wind) { _wind_from_north = 0; _wind_from_east = 0; } else { _wind_from_north = manager->get_wind_from_north(); _wind_from_east = manager->get_wind_from_east(); } //calculate velocity due to external force double force_speed_north_deg_sec = 0; double force_speed_east_deg_sec = 0; // double vs_force_fps = 0; double hs_force_fps = 0; double v_force_acc_fpss = 0; double force_speed_north_fps = 0; double force_speed_east_fps = 0; double h_force_lbs = 0; double normal_force_lbs = 0; double normal_force_fpss = 0; double static_friction_force_lbs = 0; double dynamic_friction_force_lbs = 0; double friction_force_speed_north_fps = 0; double friction_force_speed_east_fps = 0; double friction_force_speed_north_deg_sec = 0; double friction_force_speed_east_deg_sec = 0; double force_elevation_deg = 0; if (_external_force) { //cout << _name << " external force" << endl; SGPropertyNode *n = fgGetNode(_force_path.c_str(), true); double force_lbs = n->getChild("force-lb", 0, true)->getDoubleValue(); force_elevation_deg = n->getChild("force-elevation-deg", 0, true)->getDoubleValue(); double force_azimuth_deg = n->getChild("force-azimuth-deg", 0, true)->getDoubleValue(); //resolve force into vertical and horizontal components: double v_force_lbs = force_lbs * sin( force_elevation_deg * SG_DEGREES_TO_RADIANS ); h_force_lbs = force_lbs * cos( force_elevation_deg * SG_DEGREES_TO_RADIANS ); //ground interaction if (getHtAGL(10000)){ double deadzone = 0.1; if (_ht_agl_ft <= (0 + _ground_offset + deadzone) && _solid){ normal_force_lbs = (_mass * slugs_to_lbs) - v_force_lbs; if ( normal_force_lbs < 0 ) normal_force_lbs = 0; pos.setElevationFt(0 + _ground_offset); if (vs < 0) vs = -vs * 0.5; // calculate friction // we assume a static Coefficient of Friction (mu) of 0.62 (wood on concrete) double mu = 0.62; static_friction_force_lbs = mu * normal_force_lbs * _frictionFactor; //adjust horizontal force. We assume that a speed of <= 5 fps is static if (h_force_lbs <= static_friction_force_lbs && hs <= 5){ h_force_lbs = hs = 0; speed_north_fps = speed_east_fps = 0; } else dynamic_friction_force_lbs = (static_friction_force_lbs * 0.95); //ignore wind when on the ground for now //TODO fix this _wind_from_north = 0; _wind_from_east = 0; } } //acceleration = (force(lbsf)/mass(slugs)) v_force_acc_fpss = v_force_lbs/_mass; normal_force_fpss = normal_force_lbs/_mass; double h_force_acc_fpss = h_force_lbs/_mass; double dynamic_friction_acc_fpss = dynamic_friction_force_lbs/_mass; // velocity = acceleration * dt hs_force_fps = h_force_acc_fpss * dt; double friction_force_fps = dynamic_friction_acc_fpss * dt; //resolve horizontal speeds into north and east components: force_speed_north_fps = cos(force_azimuth_deg * SG_DEGREES_TO_RADIANS) * hs_force_fps; force_speed_east_fps = sin(force_azimuth_deg * SG_DEGREES_TO_RADIANS) * hs_force_fps; friction_force_speed_north_fps = cos(getRecip(hdg) * SG_DEGREES_TO_RADIANS) * friction_force_fps; friction_force_speed_east_fps = sin(getRecip(hdg) * SG_DEGREES_TO_RADIANS) * friction_force_fps; // convert horizontal speed (fps) to degrees per second force_speed_north_deg_sec = force_speed_north_fps / ft_per_deg_lat; force_speed_east_deg_sec = force_speed_east_fps / ft_per_deg_lon; friction_force_speed_north_deg_sec = friction_force_speed_north_fps / ft_per_deg_lat; friction_force_speed_east_deg_sec = friction_force_speed_east_fps / ft_per_deg_lon; } // convert wind speed (fps) to degrees lat/lon per second double wind_speed_from_north_deg_sec = _wind_from_north / ft_per_deg_lat; double wind_speed_from_east_deg_sec = _wind_from_east / ft_per_deg_lon; //recombine the horizontal velocity components hs = sqrt(((speed_north_fps + force_speed_north_fps + friction_force_speed_north_fps) * (speed_north_fps + force_speed_north_fps + friction_force_speed_north_fps)) + ((speed_east_fps + force_speed_east_fps + friction_force_speed_east_fps) * (speed_east_fps + force_speed_east_fps + friction_force_speed_east_fps))); if (hs <= 0.00001) hs = 0; // adjust vertical speed for acceleration of gravity, buoyancy, and vertical force vs -= (_gravity - _buoyancy - v_force_acc_fpss - normal_force_fpss) * dt; if (vs <= 0.00001 && vs >= -0.00001) vs = 0; // set new position if(_slave_load_to_ac) { setOffsetPos(pos, manager->get_user_heading(), manager->get_user_pitch(), manager->get_user_roll() ); pos.setLatitudeDeg(_offsetpos.getLatitudeDeg()); pos.setLongitudeDeg(_offsetpos.getLongitudeDeg()); pos.setElevationFt(_offsetpos.getElevationFt()); if (getHtAGL(10000)){ double deadzone = 0.1; if (_ht_agl_ft <= (0 + _ground_offset + deadzone) && _solid){ pos.setElevationFt(0 + _ground_offset); } else { pos.setElevationFt(_offsetpos.getElevationFt() + _load_offset); } } } else { pos.setLatitudeDeg( pos.getLatitudeDeg() + (speed_north_deg_sec - wind_speed_from_north_deg_sec + force_speed_north_deg_sec + friction_force_speed_north_deg_sec) * dt ); pos.setLongitudeDeg( pos.getLongitudeDeg() + (speed_east_deg_sec - wind_speed_from_east_deg_sec + force_speed_east_deg_sec + friction_force_speed_east_deg_sec) * dt ); pos.setElevationFt(pos.getElevationFt() + vs * dt); } // cout << _name << " run hs " << hs << " vs " << vs << endl; // recalculate total speed if ( vs == 0 && hs == 0) speed = 0; else speed = sqrt( vs * vs + hs * hs) / SG_KT_TO_FPS; // recalculate elevation and azimuth (velocity vectors) _elevation = atan2( vs, hs ) * SG_RADIANS_TO_DEGREES; _azimuth = atan2((speed_east_fps + force_speed_east_fps + friction_force_speed_east_fps), (speed_north_fps + force_speed_north_fps + friction_force_speed_north_fps)) * SG_RADIANS_TO_DEGREES; // rationalise azimuth if (_azimuth < 0) _azimuth += 360; if (_aero_stabilised) { // we simulate rotational moment of inertia by using a filter //cout<< "_aero_stabilised "<< endl; const double coeff = 0.9; // we assume a symetrical MI about the pitch and yaw axis setPch(_elevation, dt, coeff); setHdg(_azimuth, dt, coeff); } else if (_force_stabilised) { // we simulate rotational moment of inertia by using a filter //cout<< "_force_stabilised "<< endl; const double coeff = 0.9; double ratio = h_force_lbs/(_mass * slugs_to_lbs); if (ratio > 1) ratio = 1; if (ratio < -1) ratio = -1; double force_pitch = acos(ratio) * SG_RADIANS_TO_DEGREES; if (force_pitch <= force_elevation_deg) force_pitch = force_elevation_deg; // we assume a symetrical MI about the pitch and yaw axis setPch(force_pitch,dt, coeff); setHdg(_azimuth, dt, coeff); } //do impacts and collisions if (_report_impact && !_impact_reported) handle_impact(); if (_report_collision && !_collision_reported) handle_collision(); // set destruction flag if altitude less than sea level -1000 if (altitude_ft < -1000.0 && life != -1) setDie(true); } // end Run double FGAIBallistic::_getTime() const { return _life_timer; } void FGAIBallistic::handle_impact() { // try terrain intersection double start = pos.getElevationM() + 10; if(!getHtAGL(start)) return; if (_ht_agl_ft <= 0) { SG_LOG(SG_GENERAL, SG_DEBUG, "AIBallistic: terrain impact"); report_impact(_elevation_m); _impact_reported = true; if (life == -1){ invisible = true; } else if (_subID == 0) // kill the AIObject if there is no subsubmodel setDie(true); } } void FGAIBallistic::handle_expiry() { SG_LOG(SG_GENERAL, SG_DEBUG, "AIBallistic: handle_expiry " << pos.getElevationM()); report_impact(pos.getElevationM()); _expiry_reported = true; if (life == -1){ invisible = true; } else if (_subID == 0){ // kill the AIObject if there is no subsubmodel setDie(true); } } void FGAIBallistic::handle_collision() { const FGAIBase *object = manager->calcCollision(pos.getElevationFt(), pos.getLatitudeDeg(),pos.getLongitudeDeg(), _fuse_range); if (object) { report_impact(pos.getElevationM(), object); _collision_reported = true; } } void FGAIBallistic::report_impact(double elevation, const FGAIBase *object) { _impact_lat = pos.getLatitudeDeg(); _impact_lon = pos.getLongitudeDeg(); _impact_elev = elevation; _impact_speed = speed * SG_KT_TO_MPS; _impact_hdg = hdg; _impact_pitch = pitch; _impact_roll = roll; SGPropertyNode *n = props->getNode("impact", true); if (object) n->setStringValue("type", object->getTypeString()); else n->setStringValue("type", "terrain"); SG_LOG(SG_GENERAL, SG_DEBUG, "AIBallistic: object impact" << _name << " lon " <<_impact_lon); n->setDoubleValue("longitude-deg", _impact_lon); n->setDoubleValue("latitude-deg", _impact_lat); n->setDoubleValue("elevation-m", _impact_elev); n->setDoubleValue("heading-deg", _impact_hdg); n->setDoubleValue("pitch-deg", _impact_pitch); n->setDoubleValue("roll-deg", _impact_roll); n->setDoubleValue("speed-mps", _impact_speed); _impact_report_node->setStringValue(props->getPath()); } SGVec3d FGAIBallistic::getCartUserPos() const { SGVec3d cartUserPos = SGVec3d::fromGeod(userpos); return cartUserPos; } SGVec3d FGAIBallistic::getCartHitchPos() const{ // convert geodetic positions to geocentered SGVec3d cartuserPos = SGVec3d::fromGeod(userpos); //SGVec3d cartPos = getCartPos(); // Transform to the right coordinate frame, configuration is done in // the x-forward, y-right, z-up coordinates (feet), computation // in the simulation usual body x-forward, y-right, z-down coordinates // (meters) ) SGVec3d _off(_x_offset * SG_FEET_TO_METER, _y_offset * SG_FEET_TO_METER, -_z_offset * SG_FEET_TO_METER); // Transform the user position to the horizontal local coordinate system. SGQuatd hlTrans = SGQuatd::fromLonLat(userpos); // and postrotate the orientation of the user model wrt the horizontal // local frame hlTrans *= SGQuatd::fromYawPitchRollDeg( manager->get_user_heading(), manager->get_user_pitch(), manager->get_user_roll()); // The offset converted to the usual body fixed coordinate system // rotated to the earth-fixed coordinates axis SGVec3d off = hlTrans.backTransform(_off); // Add the position offset of the user model to get the geocentered position SGVec3d offsetPos = cartuserPos + off; return offsetPos; } void FGAIBallistic::setOffsetPos(SGGeod inpos, double heading, double pitch, double roll){ // convert the hitch geocentered position to geodetic SGVec3d cartoffsetPos = getCartOffsetPos(inpos, heading, pitch, roll); //SGVec3d cartoffsetPos = getCartHitchPos(); //SGGeodesy::SGCartToGeod(cartoffsetPos, hitchpos); SGGeodesy::SGCartToGeod(cartoffsetPos, _offsetpos); } double FGAIBallistic::getDistanceLoadToHitch() const { //calculate the distance load to hitch SGVec3d carthitchPos = getCartHitchPos(); SGVec3d cartPos = getCartPos(); SGVec3d diff = carthitchPos - cartPos; double distance = norm(diff); return distance * SG_METER_TO_FEET; } double FGAIBallistic::getElevLoadToHitch() const { // now the angle, positive angles are upwards double distance = getDistanceLoadToHitch() * SG_FEET_TO_METER; double angle = 0; double daltM = _offsetpos.getElevationM() - pos.getElevationM(); if (fabs(distance) < SGLimits::min()) { angle = 0; } else { double sAngle = daltM/distance; sAngle = SGMiscd::min(1, SGMiscd::max(-1, sAngle)); angle = SGMiscd::rad2deg(asin(sAngle)); } return angle; } double FGAIBallistic::getBearingLoadToHitch() const { //calculate the bearing and range of the second pos from the first double az1, az2, distance; geo_inverse_wgs_84(pos, _offsetpos, &az1, &az2, &distance); return az1; } double FGAIBallistic::getRelBrgHitchToUser() const { //calculate the relative bearing double az1, az2, distance; geo_inverse_wgs_84(_offsetpos, userpos, &az1, &az2, &distance); double rel_brg = az1 - hdg; if (rel_brg > 180) rel_brg -= 360; return rel_brg; } double FGAIBallistic::getElevHitchToUser() const { //calculate the distance from the user position SGVec3d carthitchPos = getCartHitchPos(); SGVec3d cartuserPos = getCartUserPos(); SGVec3d diff = cartuserPos - carthitchPos; double distance = norm(diff); double angle = 0; double daltM = userpos.getElevationM() - _offsetpos.getElevationM(); // now the angle, positive angles are upwards if (fabs(distance) < SGLimits::min()) { angle = 0; } else { double sAngle = daltM/distance; sAngle = SGMiscd::min(1, SGMiscd::max(-1, sAngle)); angle = SGMiscd::rad2deg(asin(sAngle)); } return angle; } void FGAIBallistic::setTgtOffsets(double dt, double coeff){ double c = dt / (coeff + dt); _x_offset = (_tgt_x_offset * c) + (_x_offset * (1 - c)); _y_offset = (_tgt_y_offset * c) + (_y_offset * (1 - c)); _z_offset = (_tgt_z_offset * c) + (_z_offset * (1 - c)); } void FGAIBallistic::formateToAC(double dt){ double hdg, pch, rll, agl, ht = 0; setTgtOffsets(dt, 25); if (_pnode != 0) { setParentPos(); hdg = _p_hdg_node->getDoubleValue(); pch = _p_pch_node->getDoubleValue(); rll = _p_rll_node->getDoubleValue(); agl = _p_agl_node->getDoubleValue(); ht = _p_alt_node->getDoubleValue(); setOffsetPos(_parentpos, hdg, pch, rll); setSpeed(_p_spd_node->getDoubleValue()); }else { hdg = manager->get_user_heading(); pch = manager->get_user_pitch(); rll = manager->get_user_roll(); agl = manager->get_user_agl(); ht = manager->get_user_altitude(); setOffsetPos(userpos, hdg, pch, rll); setSpeed(manager->get_user_speed()); } // elapsed time has a random initialisation so that each // wingman moves differently _elapsed_time += dt; // we derive a sine based factor to give us smoothly // varying error between -1 and 1 double factor = sin(SGMiscd::deg2rad(_elapsed_time * 10)); double r_angle = 5 * factor; double p_angle = 2.5 * factor; double h_angle = 5 * factor; double h_feet = 3 * factor; pos.setLatitudeDeg(_offsetpos.getLatitudeDeg()); pos.setLongitudeDeg(_offsetpos.getLongitudeDeg()); if(agl <= 10) { _height = ht; //cout << "ht case1" << endl; } else if (agl > 10 && agl <= 150 ) { setHt(ht, dt, 1.0); //cout << "ht case2" << endl; } else if (agl > 150 && agl <= 250) { setHt(_offsetpos.getElevationFt()+ h_feet, dt, 0.75); //cout << "ht case3" << endl; } else{ setHt(_offsetpos.getElevationFt()+ h_feet, dt, 0.5); //cout << "ht case4" << endl; } pos.setElevationFt(_height); // these calculations are unreliable at slow speeds if(speed >= 10) { setHdg(_azimuth + h_angle, dt, 0.9); setPch(_elevation + p_angle + _pitch_offset, dt, 0.9); if (roll <= 115 && roll >= -115) setBnk(manager->get_user_roll() + r_angle + _roll_offset, dt, 0.5); else roll = manager->get_user_roll() + r_angle + _roll_offset; } else { setHdg(manager->get_user_heading(), dt, 0.9); setPch(manager->get_user_pitch() + _pitch_offset, dt, 0.9); setBnk(manager->get_user_roll() + _roll_offset, dt, 0.9); } setOffsetVelocity(dt, pos); } void FGAIBallistic::calcVSHS(){ // calculate vertical and horizontal speed components double speed_fps = speed * SG_KT_TO_FPS; if (speed == 0.0) { hs = vs = 0.0; } else { vs = sin( _elevation * SG_DEGREES_TO_RADIANS ) * speed_fps; hs = cos( _elevation * SG_DEGREES_TO_RADIANS ) * speed_fps; } } void FGAIBallistic::calcNE(){ //resolve horizontal speed into north and east components: _speed_north_fps = cos(_azimuth / SG_RADIANS_TO_DEGREES) * hs; _speed_east_fps = sin(_azimuth / SG_RADIANS_TO_DEGREES) * hs; // convert horizontal speed (fps) to degrees per second speed_north_deg_sec = _speed_north_fps / ft_per_deg_lat; speed_east_deg_sec = _speed_east_fps / ft_per_deg_lon; } SGVec3d FGAIBallistic::getCartOffsetPos(SGGeod inpos, double user_heading, double user_pitch, double user_roll ) const{ // convert geodetic positions to geocentered SGVec3d cartuserPos = SGVec3d::fromGeod(inpos); //SGVec3d cartuserPos = getCartUserPos(); //SGVec3d cartPos = getCartPos(); // Transform to the right coordinate frame, configuration is done in // the x-forward, y-right, z-up coordinates (feet), computation // in the simulation usual body x-forward, y-right, z-down coordinates // (meters) ) SGVec3d _off(_x_offset * SG_FEET_TO_METER, _y_offset * SG_FEET_TO_METER, -_z_offset * SG_FEET_TO_METER); // Transform the user position to the horizontal local coordinate system. SGQuatd hlTrans = SGQuatd::fromLonLat(userpos); // and postrotate the orientation of the user model wrt the horizontal // local frame hlTrans *= SGQuatd::fromYawPitchRollDeg( user_heading, user_pitch, user_roll); // The offset converted to the usual body fixed coordinate system // rotated to the earth-fixed coordinates axis SGVec3d off = hlTrans.backTransform(_off); // Add the position offset of the user model to get the geocentered position SGVec3d offsetPos = cartuserPos + off; return offsetPos; } void FGAIBallistic::setOffsetVelocity(double dt, SGGeod offsetpos) { //calculate the distance from the previous offset position SGVec3d cartoffsetPos = SGVec3d::fromGeod(offsetpos); SGVec3d diff = cartoffsetPos - _oldcartoffsetPos; double distance = norm(diff); //calculate speed knots speed = (distance/dt) * SG_MPS_TO_KT; //now calulate the angle between the old and current postion positions (degrees) double angle = 0; double daltM = offsetpos.getElevationM() - _oldoffsetpos.getElevationM(); if (fabs(distance) < SGLimits::min()) { angle = 0; } else { double sAngle = daltM/distance; sAngle = SGMiscd::min(1, SGMiscd::max(-1, sAngle)); angle = SGMiscd::rad2deg(asin(sAngle)); } _elevation = angle; //calculate vertical and horizontal speed components calcVSHS(); //calculate the bearing of the new offset position from the old double az1, az2, dist; geo_inverse_wgs_84(_oldoffsetpos, offsetpos, &az1, &az2, &dist); _azimuth = az1; //resolve horizontal speed into north and east components: calcNE(); // and finally store the new values _oldcartoffsetPos = cartoffsetPos; _oldoffsetpos = offsetpos; } // end AIBallistic