#ifdef HAVE_CONFIG_H # include #endif #include #include #include #include #include // endian tests #include #include #include #include "gps.hxx" using std::cout; using std::endl; using std::string; // Network channels static netSocket fdm_sock, ctrls_sock; // gps data GPSTrack track; // Default ports static int fdm_port = 5505; static int ctrls_port = 5506; // Default path static string file = ""; // Master time counter float sim_time = 0.0f; // sim control SGTimeStamp last_time_stamp; SGTimeStamp current_time_stamp; bool inited = false; // The function htond is defined this way due to the way some // processors and OSes treat floating point values. Some will raise // an exception whenever a "bad" floating point value is loaded into a // floating point register. Solaris is notorious for this, but then // so is LynxOS on the PowerPC. By translating the data in place, // there is no need to load a FP register with the "corruped" floating // point value. By doing the BIG_ENDIAN test, I can optimize the // routine for big-endian processors so it can be as efficient as // possible static void htond (double &x) { if ( sgIsLittleEndian() ) { int *Double_Overlay; int Holding_Buffer; Double_Overlay = (int *) &x; Holding_Buffer = Double_Overlay [0]; Double_Overlay [0] = htonl (Double_Overlay [1]); Double_Overlay [1] = htonl (Holding_Buffer); } else { return; } } // Float version static void htonf (float &x) { if ( sgIsLittleEndian() ) { int *Float_Overlay; int Holding_Buffer; Float_Overlay = (int *) &x; Holding_Buffer = Float_Overlay [0]; Float_Overlay [0] = htonl (Holding_Buffer); } else { return; } } static void gps2fg( const GPSPoint p, FGNetFDM *fdm, FGNetCtrls *ctrls ) { unsigned int i; static double last_psi; static double last_alt; static double phi_filter = 0.0; static double theta_filter = 0.0; // Nan-be-gone if ( phi_filter != phi_filter ) { phi_filter = 0.0; } if ( theta_filter != theta_filter ) { theta_filter = 0.0; } // Version sanity checking fdm->version = FG_NET_FDM_VERSION; // Aero parameters fdm->longitude = p.lon_deg * SGD_DEGREES_TO_RADIANS; fdm->latitude = p.lat_deg * SGD_DEGREES_TO_RADIANS; fdm->altitude = p.altitude_msl; fdm->agl = -9999.0; fdm->psi = p.course_true; // heading double diff = p.course_true - last_psi; if ( diff < -SGD_PI ) { diff += 2.0*SGD_PI; } if ( diff > SGD_PI ) { diff -= 2.0*SGD_PI; } double phi = diff * 100.0; if ( phi > 0.5*SGD_PI ) { phi = 0.5*SGD_PI; } if ( phi < -0.5*SGD_PI ) { phi = -0.5*SGD_PI; } phi_filter = 0.99*phi_filter + 0.01*phi; fdm->phi = phi_filter; last_psi = p.course_true; // cout << p.course_true << endl; diff = p.altitude_msl - last_alt; if ( diff < -SGD_PI ) { diff += 2.0*SGD_PI; } if ( diff > SGD_PI ) { diff -= 2.0*SGD_PI; } double theta = diff * 2.0; if ( theta > 0.5*SGD_PI ) { theta = 0.5*SGD_PI; } if ( theta < -0.5*SGD_PI ) { theta = -0.5*SGD_PI; } theta_filter = 0.99*theta_filter + 0.01*theta; fdm->theta = theta_filter; last_alt = p.altitude_msl; fdm->phidot = 0.0; fdm->thetadot = 0.0; fdm->psidot = 0.0; fdm->vcas = p.speed_kts; fdm->climb_rate = 0; // fps // cout << "climb rate = " << aero->hdota << endl; fdm->v_north = 0.0; fdm->v_east = 0.0; fdm->v_down = 0.0; fdm->v_wind_body_north = 0.0; fdm->v_wind_body_east = 0.0; fdm->v_wind_body_down = 0.0; fdm->stall_warning = 0.0; fdm->A_X_pilot = 0.0; fdm->A_Y_pilot = 0.0; fdm->A_Z_pilot = 0.0 /* (should be -G) */; // Engine parameters fdm->num_engines = 1; fdm->eng_state[0] = 2; // cout << "state = " << fdm->eng_state[0] << endl; double rpm = ((p.speed_kts - 15.0) / 65.0) * 2000.0 + 500.0; if ( rpm < 0.0 ) { rpm = 0.0; } if ( rpm > 3000.0 ) { rpm = 3000.0; } fdm->rpm[0] = rpm; fdm->fuel_flow[0] = 0.0; fdm->egt[0] = 0.0; // cout << "egt = " << aero->EGT << endl; fdm->oil_temp[0] = 0.0; fdm->oil_px[0] = 0.0; // Consumables fdm->num_tanks = 2; fdm->fuel_quantity[0] = 0.0; fdm->fuel_quantity[1] = 0.0; // Gear and flaps fdm->num_wheels = 3; fdm->wow[0] = 0; fdm->wow[1] = 0; fdm->wow[2] = 0; // the following really aren't used in this context fdm->cur_time = 0; fdm->warp = 0; fdm->visibility = 0; // cout << "Flap deflection = " << aero->dflap << endl; fdm->left_flap = 0.0; fdm->right_flap = 0.0; fdm->elevator = -theta_filter * 5.0; fdm->elevator_trim_tab = 0.0; fdm->left_flap = 0.0; fdm->right_flap = 0.0; fdm->left_aileron = phi_filter * 1.5; fdm->right_aileron = phi_filter * 1.5; fdm->rudder = 0.0; fdm->nose_wheel = 0.0; fdm->speedbrake = 0.0; fdm->spoilers = 0.0; // Convert the net buffer to network format fdm->version = htonl(fdm->version); htond(fdm->longitude); htond(fdm->latitude); htond(fdm->altitude); htonf(fdm->agl); htonf(fdm->phi); htonf(fdm->theta); htonf(fdm->psi); htonf(fdm->alpha); htonf(fdm->beta); htonf(fdm->phidot); htonf(fdm->thetadot); htonf(fdm->psidot); htonf(fdm->vcas); htonf(fdm->climb_rate); htonf(fdm->v_north); htonf(fdm->v_east); htonf(fdm->v_down); htonf(fdm->v_wind_body_north); htonf(fdm->v_wind_body_east); htonf(fdm->v_wind_body_down); htonf(fdm->A_X_pilot); htonf(fdm->A_Y_pilot); htonf(fdm->A_Z_pilot); htonf(fdm->stall_warning); htonf(fdm->slip_deg); for ( i = 0; i < fdm->num_engines; ++i ) { fdm->eng_state[i] = htonl(fdm->eng_state[i]); htonf(fdm->rpm[i]); htonf(fdm->fuel_flow[i]); htonf(fdm->egt[i]); htonf(fdm->cht[i]); htonf(fdm->mp_osi[i]); htonf(fdm->tit[i]); htonf(fdm->oil_temp[i]); htonf(fdm->oil_px[i]); } fdm->num_engines = htonl(fdm->num_engines); for ( i = 0; i < fdm->num_tanks; ++i ) { htonf(fdm->fuel_quantity[i]); } fdm->num_tanks = htonl(fdm->num_tanks); for ( i = 0; i < fdm->num_wheels; ++i ) { fdm->wow[i] = htonl(fdm->wow[i]); htonf(fdm->gear_pos[i]); htonf(fdm->gear_steer[i]); htonf(fdm->gear_compression[i]); } fdm->num_wheels = htonl(fdm->num_wheels); fdm->cur_time = htonl( fdm->cur_time ); fdm->warp = htonl( fdm->warp ); htonf(fdm->visibility); htonf(fdm->elevator); htonf(fdm->elevator_trim_tab); htonf(fdm->left_flap); htonf(fdm->right_flap); htonf(fdm->left_aileron); htonf(fdm->right_aileron); htonf(fdm->rudder); htonf(fdm->nose_wheel); htonf(fdm->speedbrake); htonf(fdm->spoilers); } static void send_data( const GPSPoint p ) { int len; int ctrlsize = sizeof( FGNetCtrls ); int fdmsize = sizeof( FGNetFDM ); // cout << "Running main loop" << endl; FGNetFDM fgfdm; FGNetCtrls fgctrls; gps2fg( p, &fgfdm, &fgctrls ); len = fdm_sock.send(&fgfdm, fdmsize, 0); } void usage( const string &argv0 ) { cout << "Usage: " << argv0 << endl; cout << "\t[ --help ]" << endl; cout << "\t[ --file " << endl; cout << "\t[ --hertz ]" << endl; cout << "\t[ --host ]" << endl; cout << "\t[ --broadcast ]" << endl; cout << "\t[ --fdm-port ]" << endl; cout << "\t[ --ctrls-port ]" << endl; } int main( int argc, char **argv ) { double hertz = 60.0; string out_host = "localhost"; bool do_broadcast = false; // process command line arguments for ( int i = 1; i < argc; ++i ) { if ( strcmp( argv[i], "--help" ) == 0 ) { usage( argv[0] ); exit( 0 ); } else if ( strcmp( argv[i], "--hertz" ) == 0 ) { ++i; if ( i < argc ) { hertz = atof( argv[i] ); } else { usage( argv[0] ); exit( -1 ); } } else if ( strcmp( argv[i], "--file" ) == 0 ) { ++i; if ( i < argc ) { file = argv[i]; } else { usage( argv[0] ); exit( -1 ); } } else if ( strcmp( argv[i], "--host" ) == 0 ) { ++i; if ( i < argc ) { out_host = argv[i]; } else { usage( argv[0] ); exit( -1 ); } } else if ( strcmp( argv[i], "--broadcast" ) == 0 ) { do_broadcast = true; } else if ( strcmp( argv[i], "--fdm-port" ) == 0 ) { ++i; if ( i < argc ) { fdm_port = atoi( argv[i] ); } else { usage( argv[0] ); exit( -1 ); } } else if ( strcmp( argv[i], "--ctrls-port" ) == 0 ) { ++i; if ( i < argc ) { ctrls_port = atoi( argv[i] ); } else { usage( argv[0] ); exit( -1 ); } } else { usage( argv[0] ); exit( -1 ); } } // Load the track data if ( file == "" ) { cout << "No track file specified" << endl; exit(-1); } track.load( file ); cout << "Loaded " << track.size() << " records." << endl; // Setup up outgoing network connections netInit( &argc,argv ); // We must call this before any other net stuff if ( ! fdm_sock.open( false ) ) { // open a UDP socket cout << "error opening fdm output socket" << endl; return -1; } if ( ! ctrls_sock.open( false ) ) { // open a UDP socket cout << "error opening ctrls output socket" << endl; return -1; } cout << "open net channels" << endl; fdm_sock.setBlocking( false ); ctrls_sock.setBlocking( false ); cout << "blocking false" << endl; if ( do_broadcast ) { fdm_sock.setBroadcast( true ); ctrls_sock.setBroadcast( true ); } if ( fdm_sock.connect( out_host.c_str(), fdm_port ) == -1 ) { perror("connect"); cout << "error connecting to outgoing fdm port: " << out_host << ":" << fdm_port << endl; return -1; } cout << "connected outgoing fdm socket" << endl; if ( ctrls_sock.connect( out_host.c_str(), ctrls_port ) == -1 ) { perror("connect"); cout << "error connecting to outgoing ctrls port: " << out_host << ":" << ctrls_port << endl; return -1; } cout << "connected outgoing ctrls socket" << endl; int size = track.size(); double current_time = track.get_point(0).get_time(); cout << "Track begin time is " << current_time << endl; double end_time = track.get_point(size-1).get_time(); cout << "Track end time is " << end_time << endl; cout << "Duration = " << end_time - current_time << endl; double frame_us = 1000000.0 / hertz; if ( frame_us < 0.0 ) { frame_us = 0.0; } SGTimeStamp start_time; start_time.stamp(); int count = 0; GPSPoint p, p0, p1; p0 = p1 = track.get_point( 0 ); while ( current_time < end_time ) { // cout << "current_time = " << current_time << " end_time = " // << end_time << endl; if ( current_time > p1.get_time() ) { p0 = p1; ++count; // cout << "count = " << count << endl; p1 = track.get_point( count ); } // cout << "p0 = " << p0.get_time() << " p1 = " << p1.get_time() // << endl; double percent; if ( fabs(p1.get_time() - p0.get_time()) < 0.0001 ) { percent = 0.0; } else { percent = (current_time - p0.get_time()) / (p1.get_time() - p0.get_time()); } // cout << "Percent = " << percent << endl; GPSPoint p = GPSInterpolate( p0, p1, percent ); // cout << current_time << " " << p0.lat_deg << ", " << p0.lon_deg << endl; // cout << current_time << " " << p1.lat_deg << ", " << p1.lon_deg << endl; cout << current_time << " " << p.lat_deg << ", " << p.lon_deg << endl; send_data( p ); // Update the elapsed time. static bool first_time = true; if ( first_time ) { last_time_stamp.stamp(); first_time = false; } current_time_stamp.stamp(); /* Convert to ms */ double elapsed_us = current_time_stamp - last_time_stamp; if ( elapsed_us < (frame_us - 2000) ) { double requested_us = (frame_us - elapsed_us) - 2000 ; ulMilliSecondSleep ( (int)(requested_us / 1000.0) ) ; } current_time_stamp.stamp(); while ( current_time_stamp - last_time_stamp < frame_us ) { current_time_stamp.stamp(); } current_time += (frame_us / 1000000.0); last_time_stamp = current_time_stamp; } cout << "Processed " << count << " entries in " << current_time_stamp - start_time << " seconds." << endl; return 0; }