// views.cxx -- data structures and routines for managing and view // parameters. // // Written by Curtis Olson, started August 1997. // // Copyright (C) 1997 Curtis L. Olson - curt@infoplane.com // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. // // $Id$ #ifdef HAVE_CONFIG_H # include <config.h> #endif #include <Aircraft/aircraft.hxx> #include <Cockpit/panel.hxx> #include <Debug/logstream.hxx> #include <Include/fg_constants.h> #include <Math/mat3.h> #include <Math/point3d.hxx> #include <Math/polar3d.hxx> #include <Math/vector.hxx> #include <Scenery/scenery.hxx> #include <Time/fg_time.hxx> #include "options.hxx" #include "views.hxx" // Define following to extract various vectors directly // from matrices we have allready computed // rather then performing 'textbook algebra' to rederive them // Norman Vine -- nhv@yahoo.com // #define FG_VIEW_INLINE_OPTIMIZATIONS // temporary (hopefully) hack static int panel_hist = 0; // specify code paths ... these are done as variable rather than // #define's because down the road we may want to choose between them // on the fly for different flight models ... this way magic carpet // and external modes wouldn't need to recreate the LaRCsim matrices // themselves. static const bool use_larcsim_local_to_body = false; // This is a record containing current view parameters FGView current_view; // Constructor FGView::FGView( void ) { MAT3identity(WORLD); } // Initialize a view structure void FGView::Init( void ) { FG_LOG( FG_VIEW, FG_INFO, "Initializing View parameters" ); view_offset = 0.0; goal_view_offset = 0.0; winWidth = current_options.get_xsize(); winHeight = current_options.get_ysize(); if ( ! current_options.get_panel_status() ) { current_view.set_win_ratio( (GLfloat) winWidth / (GLfloat) winHeight ); } else { current_view.set_win_ratio( (GLfloat) winWidth / ((GLfloat) (winHeight)*0.4232) ); } force_update_fov_math(); } // Update the field of view coefficients void FGView::UpdateFOV( const fgOPTIONS& o ) { double fov, theta_x, theta_y; fov = o.get_fov(); // printf("win_ratio = %.2f\n", win_ratio); // calculate sin() and cos() of fov / 2 in X direction; theta_x = (fov * win_ratio * DEG_TO_RAD) / 2.0; // printf("theta_x = %.2f\n", theta_x); sin_fov_x = sin(theta_x); cos_fov_x = cos(theta_x); slope_x = -cos_fov_x / sin_fov_x; // printf("slope_x = %.2f\n", slope_x); // fov_x_clip and fov_y_clip convoluted algebraic simplification // see code executed in tilemgr.cxx when USE_FAST_FOV_CLIP not // defined Norman Vine -- nhv@yahoo.com #if defined( USE_FAST_FOV_CLIP ) fov_x_clip = slope_x*cos_fov_x - sin_fov_x; #endif // defined( USE_FAST_FOV_CLIP ) // calculate sin() and cos() of fov / 2 in Y direction; theta_y = (fov * DEG_TO_RAD) / 2.0; // printf("theta_y = %.2f\n", theta_y); sin_fov_y = sin(theta_y); cos_fov_y = cos(theta_y); slope_y = cos_fov_y / sin_fov_y; // printf("slope_y = %.2f\n", slope_y); #if defined( USE_FAST_FOV_CLIP ) fov_y_clip = -(slope_y*cos_fov_y + sin_fov_y); #endif // defined( USE_FAST_FOV_CLIP ) } // Basically, this is a modified version of the Mesa gluLookAt() // function that's been modified slightly so we can capture the // result before sending it off to OpenGL land. void FGView::LookAt( GLdouble eyex, GLdouble eyey, GLdouble eyez, GLdouble centerx, GLdouble centery, GLdouble centerz, GLdouble upx, GLdouble upy, GLdouble upz ) { GLfloat *m; GLdouble x[3], y[3], z[3]; GLdouble mag; m = current_view.MODEL_VIEW; /* Make rotation matrix */ /* Z vector */ z[0] = eyex - centerx; z[1] = eyey - centery; z[2] = eyez - centerz; mag = sqrt( z[0]*z[0] + z[1]*z[1] + z[2]*z[2] ); if (mag) { /* mpichler, 19950515 */ z[0] /= mag; z[1] /= mag; z[2] /= mag; } /* Y vector */ y[0] = upx; y[1] = upy; y[2] = upz; /* X vector = Y cross Z */ x[0] = y[1]*z[2] - y[2]*z[1]; x[1] = -y[0]*z[2] + y[2]*z[0]; x[2] = y[0]*z[1] - y[1]*z[0]; /* Recompute Y = Z cross X */ y[0] = z[1]*x[2] - z[2]*x[1]; y[1] = -z[0]*x[2] + z[2]*x[0]; y[2] = z[0]*x[1] - z[1]*x[0]; /* mpichler, 19950515 */ /* cross product gives area of parallelogram, which is < 1.0 for * non-perpendicular unit-length vectors; so normalize x, y here */ mag = sqrt( x[0]*x[0] + x[1]*x[1] + x[2]*x[2] ); if (mag) { x[0] /= mag; x[1] /= mag; x[2] /= mag; } mag = sqrt( y[0]*y[0] + y[1]*y[1] + y[2]*y[2] ); if (mag) { y[0] /= mag; y[1] /= mag; y[2] /= mag; } #define M(row,col) m[col*4+row] M(0,0) = x[0]; M(0,1) = x[1]; M(0,2) = x[2]; M(0,3) = 0.0; M(1,0) = y[0]; M(1,1) = y[1]; M(1,2) = y[2]; M(1,3) = 0.0; M(2,0) = z[0]; M(2,1) = z[1]; M(2,2) = z[2]; M(2,3) = 0.0; // the following is part of the original gluLookAt(), but we are // commenting it out because we know we are going to be doing a // translation below which will set these values anyways // M(3,0) = 0.0; M(3,1) = 0.0; M(3,2) = 0.0; M(3,3) = 1.0; #undef M // Translate Eye to Origin // replaces: glTranslated( -eyex, -eyey, -eyez ); // this has been slightly modified from the original glTranslate() // code because we know that coming into this m[12] = m[13] = // m[14] = 0.0, and m[15] = 1.0; m[12] = m[0] * -eyex + m[4] * -eyey + m[8] * -eyez /* + m[12] */; m[13] = m[1] * -eyex + m[5] * -eyey + m[9] * -eyez /* + m[13] */; m[14] = m[2] * -eyex + m[6] * -eyey + m[10] * -eyez /* + m[14] */; m[15] = 1.0 /* m[3] * -eyex + m[7] * -eyey + m[11] * -eyez + m[15] */; // xglMultMatrixd( m ); xglLoadMatrixf( m ); } // Update the view volume, position, and orientation void FGView::UpdateViewParams( void ) { FGInterface *f = current_aircraft.fdm_state; UpdateViewMath(f); UpdateWorldToEye(f); if ((current_options.get_panel_status() != panel_hist) && (current_options.get_panel_status())) { FGPanel::OurPanel->ReInit( 0, 0, 1024, 768); } if ( ! current_options.get_panel_status() ) { xglViewport(0, 0 , (GLint)(winWidth), (GLint)(winHeight) ); } else { xglViewport(0, (GLint)((winHeight)*0.5768), (GLint)(winWidth), (GLint)((winHeight)*0.4232) ); } // Tell GL we are about to modify the projection parameters xglMatrixMode(GL_PROJECTION); xglLoadIdentity(); if ( f->get_Altitude() * FEET_TO_METER - scenery.cur_elev > 10.0 ) { gluPerspective(current_options.get_fov(), win_ratio, 10.0, 100000.0); } else { gluPerspective(current_options.get_fov(), win_ratio, 0.5, 100000.0); // printf("Near ground, minimizing near clip plane\n"); } // } xglMatrixMode(GL_MODELVIEW); xglLoadIdentity(); // set up our view volume (default) #if !defined(FG_VIEW_INLINE_OPTIMIZATIONS) LookAt(view_pos.x(), view_pos.y(), view_pos.z(), view_pos.x() + view_forward[0], view_pos.y() + view_forward[1], view_pos.z() + view_forward[2], view_up[0], view_up[1], view_up[2]); // look almost straight up (testing and eclipse watching) /* LookAt(view_pos.x(), view_pos.y(), view_pos.z(), view_pos.x() + view_up[0] + .001, view_pos.y() + view_up[1] + .001, view_pos.z() + view_up[2] + .001, view_up[0], view_up[1], view_up[2]); */ // lock view horizontally towards sun (testing) /* LookAt(view_pos.x(), view_pos.y(), view_pos.z(), view_pos.x() + surface_to_sun[0], view_pos.y() + surface_to_sun[1], view_pos.z() + surface_to_sun[2], view_up[0], view_up[1], view_up[2]); */ // lock view horizontally towards south (testing) /* LookAt(view_pos.x(), view_pos.y(), view_pos.z(), view_pos.x() + surface_south[0], view_pos.y() + surface_south[1], view_pos.z() + surface_south[2], view_up[0], view_up[1], view_up[2]); */ #else // defined(FG_VIEW_INLINE_OPTIMIZATIONS) //void FGView::LookAt( GLdouble eyex, GLdouble eyey, GLdouble eyez, // GLdouble centerx, GLdouble centery, GLdouble centerz, // GLdouble upx, GLdouble upy, GLdouble upz ) { GLfloat *m; GLdouble x[3], y[3], z[3]; // GLdouble mag; m = current_view.MODEL_VIEW; /* Make rotation matrix */ /* Z vector */ z[0] = -view_forward[0]; //eyex - centerx; z[1] = -view_forward[1]; //eyey - centery; z[2] = -view_forward[2]; //eyez - centerz; // In our case this is a unit vector NHV // mag = sqrt( z[0]*z[0] + z[1]*z[1] + z[2]*z[2] ); // if (mag) { /* mpichler, 19950515 */ // mag = 1.0/mag; // printf("mag(%f) ", mag); // z[0] *= mag; // z[1] *= mag; // z[2] *= mag; // } /* Y vector */ y[0] = view_up[0]; //upx; y[1] = view_up[1]; //upy; y[2] = view_up[2]; //upz; /* X vector = Y cross Z */ x[0] = y[1]*z[2] - y[2]*z[1]; x[1] = -y[0]*z[2] + y[2]*z[0]; x[2] = y[0]*z[1] - y[1]*z[0]; // printf(" %f %f %f ", y[0], y[1], y[2]); /* Recompute Y = Z cross X */ // y[0] = z[1]*x[2] - z[2]*x[1]; // y[1] = -z[0]*x[2] + z[2]*x[0]; // y[2] = z[0]*x[1] - z[1]*x[0]; // printf(" %f %f %f\n", y[0], y[1], y[2]); // In our case these are unit vectors NHV /* mpichler, 19950515 */ /* cross product gives area of parallelogram, which is < 1.0 for * non-perpendicular unit-length vectors; so normalize x, y here */ // mag = sqrt( x[0]*x[0] + x[1]*x[1] + x[2]*x[2] ); // if (mag) { // mag = 1.0/mag; // printf("mag2(%f) ", mag); // x[0] *= mag; // x[1] *= mag; // x[2] *= mag; // } // mag = sqrt( y[0]*y[0] + y[1]*y[1] + y[2]*y[2] ); // if (mag) { // mag = 1.0/mag; // printf("mag3(%f)\n", mag); // y[0] *= mag; // y[1] *= mag; // y[2] *= mag; // } #define M(row,col) m[col*4+row] M(0,0) = x[0]; M(0,1) = x[1]; M(0,2) = x[2]; M(0,3) = 0.0; M(1,0) = y[0]; M(1,1) = y[1]; M(1,2) = y[2]; M(1,3) = 0.0; M(2,0) = z[0]; M(2,1) = z[1]; M(2,2) = z[2]; M(2,3) = 0.0; // the following is part of the original gluLookAt(), but we are // commenting it out because we know we are going to be doing a // translation below which will set these values anyways // M(3,0) = 0.0; M(3,1) = 0.0; M(3,2) = 0.0; M(3,3) = 1.0; #undef M // Translate Eye to Origin // replaces: glTranslated( -eyex, -eyey, -eyez ); // this has been slightly modified from the original glTranslate() // code because we know that coming into this m[12] = m[13] = // m[14] = 0.0, and m[15] = 1.0; m[12] = m[0] * -view_pos.x() + m[4] * -view_pos.y() + m[8] * -view_pos.z() /* + m[12] */; m[13] = m[1] * -view_pos.x() + m[5] * -view_pos.y() + m[9] * -view_pos.z() /* + m[13] */; m[14] = m[2] * -view_pos.x() + m[6] * -view_pos.y() + m[10] * -view_pos.z() /* + m[14] */; m[15] = 1.0 /* m[3] * -view_pos.x() + m[7] * -view_pos.y() + m[11] * -view_pos.z() + m[15] */; // xglMultMatrixd( m ); xglLoadMatrixf( m ); } #endif // FG_VIEW_INLINE_OPTIMIZATIONS panel_hist = current_options.get_panel_status(); } void getRotMatrix(double* out, MAT3vec vec, double radians) { /* This function contributed by Erich Boleyn (erich@uruk.org) */ /* This function used from the Mesa OpenGL code (matrix.c) */ double s, c; // mag, double vx, vy, vz, xy, yz, zx, xs, ys, zs, one_c; //, xx, yy, zz MAT3identity(out); s = sin(radians); c = cos(radians); // mag = getMagnitude(); vx = vec[0]; vy = vec[1]; vz = vec[2]; #define M(row,col) out[row*4 + col] /* * Arbitrary axis rotation matrix. * * This is composed of 5 matrices, Rz, Ry, T, Ry', Rz', multiplied * like so: Rz * Ry * T * Ry' * Rz'. T is the final rotation * (which is about the X-axis), and the two composite transforms * Ry' * Rz' and Rz * Ry are (respectively) the rotations necessary * from the arbitrary axis to the X-axis then back. They are * all elementary rotations. * * Rz' is a rotation about the Z-axis, to bring the axis vector * into the x-z plane. Then Ry' is applied, rotating about the * Y-axis to bring the axis vector parallel with the X-axis. The * rotation about the X-axis is then performed. Ry and Rz are * simply the respective inverse transforms to bring the arbitrary * axis back to it's original orientation. The first transforms * Rz' and Ry' are considered inverses, since the data from the * arbitrary axis gives you info on how to get to it, not how * to get away from it, and an inverse must be applied. * * The basic calculation used is to recognize that the arbitrary * axis vector (x, y, z), since it is of unit length, actually * represents the sines and cosines of the angles to rotate the * X-axis to the same orientation, with theta being the angle about * Z and phi the angle about Y (in the order described above) * as follows: * * cos ( theta ) = x / sqrt ( 1 - z^2 ) * sin ( theta ) = y / sqrt ( 1 - z^2 ) * * cos ( phi ) = sqrt ( 1 - z^2 ) * sin ( phi ) = z * * Note that cos ( phi ) can further be inserted to the above * formulas: * * cos ( theta ) = x / cos ( phi ) * sin ( theta ) = y / cos ( phi ) * * ...etc. Because of those relations and the standard trigonometric * relations, it is pssible to reduce the transforms down to what * is used below. It may be that any primary axis chosen will give the * same results (modulo a sign convention) using thie method. * * Particularly nice is to notice that all divisions that might * have caused trouble when parallel to certain planes or * axis go away with care paid to reducing the expressions. * After checking, it does perform correctly under all cases, since * in all the cases of division where the denominator would have * been zero, the numerator would have been zero as well, giving * the expected result. */ one_c = 1.0F - c; // xx = vx * vx; // yy = vy * vy; // zz = vz * vz; // xy = vx * vy; // yz = vy * vz; // zx = vz * vx; M(0,0) = (one_c * vx * vx) + c; xs = vx * s; yz = vy * vz * one_c; M(1,2) = yz + xs; M(2,1) = yz - xs; M(1,1) = (one_c * vy * vy) + c; ys = vy * s; zx = vz * vx * one_c; M(0,2) = zx - ys; M(2,0) = zx + ys; M(2,2) = (one_c * vz *vz) + c; zs = vz * s; xy = vx * vy * one_c; M(0,1) = xy + zs; M(1,0) = xy - zs; // M(0,0) = (one_c * xx) + c; // M(1,0) = (one_c * xy) - zs; // M(2,0) = (one_c * zx) + ys; // M(0,1) = (one_c * xy) + zs; // M(1,1) = (one_c * yy) + c; // M(2,1) = (one_c * yz) - xs; // M(0,2) = (one_c * zx) - ys; // M(1,2) = (one_c * yz) + xs; // M(2,2) = (one_c * zz) + c; #undef M } // Update the view parameters void FGView::UpdateViewMath( FGInterface *f ) { Point3D p; MAT3vec vec, forward, v0, minus_z; MAT3mat R, TMP, UP, LOCAL, VIEW; double ntmp; if ( update_fov ) { // printf("Updating fov\n"); UpdateFOV( current_options ); update_fov = false; } scenery.center = scenery.next_center; #if !defined(FG_VIEW_INLINE_OPTIMIZATIONS) // printf("scenery center = %.2f %.2f %.2f\n", scenery.center.x, // scenery.center.y, scenery.center.z); // calculate the cartesion coords of the current lat/lon/0 elev p = Point3D( f->get_Longitude(), f->get_Lat_geocentric(), f->get_Sea_level_radius() * FEET_TO_METER ); cur_zero_elev = fgPolarToCart3d(p) - scenery.center; // calculate view position in current FG view coordinate system // p.lon & p.lat are already defined earlier, p.radius was set to // the sea level radius, so now we add in our altitude. if ( f->get_Altitude() * FEET_TO_METER > (scenery.cur_elev + 0.5 * METER_TO_FEET) ) { p.setz( p.radius() + f->get_Altitude() * FEET_TO_METER ); } else { p.setz( p.radius() + scenery.cur_elev + 0.5 * METER_TO_FEET ); } abs_view_pos = fgPolarToCart3d(p); #else // FG_VIEW_INLINE_OPTIMIZATIONS double tmp_radius = f->get_Sea_level_radius() * FEET_TO_METER; double tmp = f->get_cos_lat_geocentric() * tmp_radius; cur_zero_elev.setx(f->get_cos_longitude()*tmp - scenery.center.x()); cur_zero_elev.sety(f->get_sin_longitude()*tmp - scenery.center.y()); cur_zero_elev.setz(f->get_sin_lat_geocentric()*tmp_radius - scenery.center.z()); // calculate view position in current FG view coordinate system // p.lon & p.lat are already defined earlier, p.radius was set to // the sea level radius, so now we add in our altitude. if ( f->get_Altitude() * FEET_TO_METER > (scenery.cur_elev + 0.5 * METER_TO_FEET) ) { tmp_radius += f->get_Altitude() * FEET_TO_METER; } else { tmp_radius += scenery.cur_elev + 0.5 * METER_TO_FEET ; } tmp = f->get_cos_lat_geocentric() * tmp_radius; abs_view_pos.setx(f->get_cos_longitude()*tmp); abs_view_pos.sety(f->get_sin_longitude()*tmp); abs_view_pos.setz(f->get_sin_lat_geocentric()*tmp_radius); #endif // FG_VIEW_INLINE_OPTIMIZATIONS view_pos = abs_view_pos - scenery.center; FG_LOG( FG_VIEW, FG_DEBUG, "Polar view pos = " << p ); FG_LOG( FG_VIEW, FG_DEBUG, "Absolute view pos = " << abs_view_pos ); FG_LOG( FG_VIEW, FG_DEBUG, "Relative view pos = " << view_pos ); // Derive the LOCAL aircraft rotation matrix (roll, pitch, yaw) // from FG_T_local_to_body[3][3] if ( use_larcsim_local_to_body ) { // Question: Why is the LaRCsim matrix arranged so differently // than the one we need??? // Answer (I think): The LaRCsim matrix is generated in a // different reference frame than we've set up for our world LOCAL[0][0] = f->get_T_local_to_body_33(); LOCAL[0][1] = -f->get_T_local_to_body_32(); LOCAL[0][2] = -f->get_T_local_to_body_31(); LOCAL[0][3] = 0.0; LOCAL[1][0] = -f->get_T_local_to_body_23(); LOCAL[1][1] = f->get_T_local_to_body_22(); LOCAL[1][2] = f->get_T_local_to_body_21(); LOCAL[1][3] = 0.0; LOCAL[2][0] = -f->get_T_local_to_body_13(); LOCAL[2][1] = f->get_T_local_to_body_12(); LOCAL[2][2] = f->get_T_local_to_body_11(); LOCAL[2][3] = 0.0; LOCAL[3][0] = LOCAL[3][1] = LOCAL[3][2] = LOCAL[3][3] = 0.0; LOCAL[3][3] = 1.0; // printf("LaRCsim LOCAL matrix\n"); // MAT3print(LOCAL, stdout); } else { // code to calculate LOCAL matrix calculated from Phi, Theta, and // Psi (roll, pitch, yaw) in case we aren't running LaRCsim as our // flight model MAT3_SET_VEC(vec, 0.0, 0.0, 1.0); MAT3rotate(R, vec, f->get_Phi()); /* printf("Roll matrix\n"); */ /* MAT3print(R, stdout); */ MAT3_SET_VEC(vec, 0.0, 1.0, 0.0); /* MAT3mult_vec(vec, vec, R); */ MAT3rotate(TMP, vec, f->get_Theta()); /* printf("Pitch matrix\n"); */ /* MAT3print(TMP, stdout); */ MAT3mult(R, R, TMP); MAT3_SET_VEC(vec, 1.0, 0.0, 0.0); /* MAT3mult_vec(vec, vec, R); */ /* MAT3rotate(TMP, vec, FG_Psi - FG_PI_2); */ MAT3rotate(TMP, vec, -f->get_Psi()); /* printf("Yaw matrix\n"); MAT3print(TMP, stdout); */ MAT3mult(LOCAL, R, TMP); // printf("FG derived LOCAL matrix\n"); // MAT3print(LOCAL, stdout); } // if ( use_larcsim_local_to_body ) #if !defined(FG_VIEW_INLINE_OPTIMIZATIONS) // Derive the local UP transformation matrix based on *geodetic* // coordinates MAT3_SET_VEC(vec, 0.0, 0.0, 1.0); MAT3rotate(R, vec, f->get_Longitude()); // R = rotate about Z axis // printf("Longitude matrix\n"); // MAT3print(R, stdout); MAT3_SET_VEC(vec, 0.0, 1.0, 0.0); MAT3mult_vec(vec, vec, R); MAT3rotate(TMP, vec, -f->get_Latitude()); // TMP = rotate about X axis // printf("Latitude matrix\n"); // MAT3print(TMP, stdout); MAT3mult(UP, R, TMP); // printf("Local up matrix\n"); // MAT3print(UP, stdout); MAT3_SET_VEC(local_up, 1.0, 0.0, 0.0); MAT3mult_vec(local_up, local_up, UP); // printf( "Local Up = (%.4f, %.4f, %.4f)\n", // local_up[0], local_up[1], local_up[2]); // Alternative method to Derive local up vector based on // *geodetic* coordinates // alt_up = fgPolarToCart(FG_Longitude, FG_Latitude, 1.0); // printf( " Alt Up = (%.4f, %.4f, %.4f)\n", // alt_up.x, alt_up.y, alt_up.z); // Calculate the VIEW matrix MAT3mult(VIEW, LOCAL, UP); // printf("VIEW matrix\n"); // MAT3print(VIEW, stdout); // generate the current up, forward, and fwrd-view vectors MAT3_SET_VEC(vec, 1.0, 0.0, 0.0); MAT3mult_vec(view_up, vec, VIEW); MAT3_SET_VEC(vec, 0.0, 0.0, 1.0); MAT3mult_vec(forward, vec, VIEW); // printf( "Forward vector is (%.2f,%.2f,%.2f)\n", forward[0], forward[1], // forward[2]); MAT3rotate(TMP, view_up, view_offset); MAT3mult_vec(view_forward, forward, TMP); // make a vector to the current view position MAT3_SET_VEC(v0, view_pos.x(), view_pos.y(), view_pos.z()); // Given a vector pointing straight down (-Z), map into onto the // local plane representing "horizontal". This should give us the // local direction for moving "south". MAT3_SET_VEC(minus_z, 0.0, 0.0, -1.0); map_vec_onto_cur_surface_plane(local_up, v0, minus_z, surface_south); MAT3_NORMALIZE_VEC(surface_south, ntmp); // printf( "Surface direction directly south %.2f %.2f %.2f\n", // surface_south[0], surface_south[1], surface_south[2]); // now calculate the surface east vector MAT3rotate(TMP, view_up, FG_PI_2); MAT3mult_vec(surface_east, surface_south, TMP); // printf( "Surface direction directly east %.2f %.2f %.2f\n", // surface_east[0], surface_east[1], surface_east[2]); // printf( "Should be close to zero = %.2f\n", // MAT3_DOT_PRODUCT(surface_south, surface_east)); #else // FG_VIEW_INLINE_OPTIMIZATIONS // // Build spherical to cartesian transform matrix directly double cos_lat = f->get_cos_latitude(); // cos(-f->get_Latitude()); double sin_lat = -f->get_sin_latitude(); // sin(-f->get_Latitude()); double cos_lon = f->get_cos_longitude(); //cos(f->get_Longitude()); double sin_lon = f->get_sin_longitude(); //sin(f->get_Longitude()); double *mat = (double *)UP; mat[0] = cos_lat*cos_lon; mat[1] = cos_lat*sin_lon; mat[2] = -sin_lat; mat[3] = 0.0; mat[4] = -sin_lon; mat[5] = cos_lon; mat[6] = 0.0; mat[7] = 0.0; mat[8] = sin_lat*cos_lon; mat[9] = sin_lat*sin_lon; mat[10] = cos_lat; mat[11] = mat[12] = mat[13] = mat[14] = 0.0; mat[15] = 1.0; MAT3mult(VIEW, LOCAL, UP); // THESE COULD JUST BE POINTERS !!! MAT3_SET_VEC(local_up, mat[0], mat[1], mat[2]); MAT3_SET_VEC(view_up, VIEW[0][0], VIEW[0][1], VIEW[0][2]); MAT3_SET_VEC(forward, VIEW[2][0], VIEW[2][1], VIEW[2][2]); getRotMatrix((double *)TMP, view_up, view_offset); MAT3mult_vec(view_forward, forward, TMP); // make a vector to the current view position MAT3_SET_VEC(v0, view_pos.x(), view_pos.y(), view_pos.z()); // Given a vector pointing straight down (-Z), map into onto the // local plane representing "horizontal". This should give us the // local direction for moving "south". MAT3_SET_VEC(minus_z, 0.0, 0.0, -1.0); map_vec_onto_cur_surface_plane(local_up, v0, minus_z, surface_south); MAT3_NORMALIZE_VEC(surface_south, ntmp); // printf( "Surface direction directly south %.6f %.6f %.6f\n", // surface_south[0], surface_south[1], surface_south[2]); // now calculate the surface east vector getRotMatrix((double *)TMP, view_up, FG_PI_2); MAT3mult_vec(surface_east, surface_south, TMP); // printf( "Surface direction directly east %.6f %.6f %.6f\n", // surface_east[0], surface_east[1], surface_east[2]); // printf( "Should be close to zero = %.6f\n", // MAT3_DOT_PRODUCT(surface_south, surface_east)); #endif // !defined(FG_VIEW_INLINE_OPTIMIZATIONS) } // Update the "World to Eye" transformation matrix // This is most useful for view frustum culling void FGView::UpdateWorldToEye( FGInterface *f ) { MAT3mat R_Phi, R_Theta, R_Psi, R_Lat, R_Lon, T_view; MAT3mat TMP; MAT3hvec vec; if ( use_larcsim_local_to_body ) { // Question: hey this is even different then LOCAL[][] above?? // Answer: yet another coordinate system, this time the // coordinate system in which we do our view frustum culling. AIRCRAFT[0][0] = -f->get_T_local_to_body_22(); AIRCRAFT[0][1] = -f->get_T_local_to_body_23(); AIRCRAFT[0][2] = f->get_T_local_to_body_21(); AIRCRAFT[0][3] = 0.0; AIRCRAFT[1][0] = f->get_T_local_to_body_32(); AIRCRAFT[1][1] = f->get_T_local_to_body_33(); AIRCRAFT[1][2] = -f->get_T_local_to_body_31(); AIRCRAFT[1][3] = 0.0; AIRCRAFT[2][0] = f->get_T_local_to_body_12(); AIRCRAFT[2][1] = f->get_T_local_to_body_13(); AIRCRAFT[2][2] = -f->get_T_local_to_body_11(); AIRCRAFT[2][3] = 0.0; AIRCRAFT[3][0] = AIRCRAFT[3][1] = AIRCRAFT[3][2] = AIRCRAFT[3][3] = 0.0; AIRCRAFT[3][3] = 1.0; } else { // Roll Matrix MAT3_SET_HVEC(vec, 0.0, 0.0, -1.0, 1.0); MAT3rotate(R_Phi, vec, f->get_Phi()); // printf("Roll matrix (Phi)\n"); // MAT3print(R_Phi, stdout); // Pitch Matrix MAT3_SET_HVEC(vec, 1.0, 0.0, 0.0, 1.0); MAT3rotate(R_Theta, vec, f->get_Theta()); // printf("\nPitch matrix (Theta)\n"); // MAT3print(R_Theta, stdout); // Yaw Matrix MAT3_SET_HVEC(vec, 0.0, -1.0, 0.0, 1.0); MAT3rotate(R_Psi, vec, f->get_Psi() + FG_PI /* - view_offset */ ); // MAT3rotate(R_Psi, vec, f->get_Psi() + FG_PI - view_offset ); // printf("\nYaw matrix (Psi)\n"); // MAT3print(R_Psi, stdout); // aircraft roll/pitch/yaw MAT3mult(TMP, R_Phi, R_Theta); MAT3mult(AIRCRAFT, TMP, R_Psi); } // if ( use_larcsim_local_to_body ) #if !defined(FG_VIEW_INLINE_OPTIMIZATIONS) // printf("AIRCRAFT matrix\n"); // MAT3print(AIRCRAFT, stdout); // View rotation matrix relative to current aircraft orientation MAT3_SET_HVEC(vec, 0.0, -1.0, 0.0, 1.0); MAT3mult_vec(vec, vec, AIRCRAFT); // printf("aircraft up vector = %.2f %.2f %.2f\n", // vec[0], vec[1], vec[2]); MAT3rotate(TMP, vec, -view_offset ); MAT3mult(VIEW_OFFSET, AIRCRAFT, TMP); // printf("VIEW_OFFSET matrix\n"); // MAT3print(VIEW_OFFSET, stdout); // View position in scenery centered coordinates MAT3_SET_HVEC(vec, view_pos.x(), view_pos.y(), view_pos.z(), 1.0); MAT3translate(T_view, vec); // printf("\nTranslation matrix\n"); // MAT3print(T_view, stdout); // Latitude MAT3_SET_HVEC(vec, 1.0, 0.0, 0.0, 1.0); // R_Lat = rotate about X axis MAT3rotate(R_Lat, vec, f->get_Latitude()); // printf("\nLatitude matrix\n"); // MAT3print(R_Lat, stdout); // Longitude MAT3_SET_HVEC(vec, 0.0, 0.0, 1.0, 1.0); // R_Lon = rotate about Z axis MAT3rotate(R_Lon, vec, f->get_Longitude() - FG_PI_2 ); // printf("\nLongitude matrix\n"); // MAT3print(R_Lon, stdout); // lon/lat MAT3mult(WORLD, R_Lat, R_Lon); // printf("\nworld\n"); // MAT3print(WORLD, stdout); MAT3mult(EYE_TO_WORLD, VIEW_OFFSET, WORLD); MAT3mult(EYE_TO_WORLD, EYE_TO_WORLD, T_view); // printf("\nEye to world\n"); // MAT3print(EYE_TO_WORLD, stdout); MAT3invert(WORLD_TO_EYE, EYE_TO_WORLD); // printf("\nWorld to eye\n"); // MAT3print(WORLD_TO_EYE, stdout); // printf( "\nview_pos = %.2f %.2f %.2f\n", // view_pos.x, view_pos.y, view_pos.z ); // MAT3_SET_HVEC(eye, 0.0, 0.0, 0.0, 1.0); // MAT3mult_vec(vec, eye, EYE_TO_WORLD); // printf("\neye -> world = %.2f %.2f %.2f\n", vec[0], vec[1], vec[2]); // MAT3_SET_HVEC(vec1, view_pos.x, view_pos.y, view_pos.z, 1.0); // MAT3mult_vec(vec, vec1, WORLD_TO_EYE); // printf( "\nabs_view_pos -> eye = %.2f %.2f %.2f\n", // vec[0], vec[1], vec[2]); #else // FG_VIEW_INLINE_OPTIMIZATIONS MAT3_SET_HVEC(vec, -AIRCRAFT[1][0], -AIRCRAFT[1][1], -AIRCRAFT[1][2], -AIRCRAFT[1][3]); getRotMatrix((double *)TMP, vec, -view_offset ); MAT3mult(VIEW_OFFSET, AIRCRAFT, TMP); // MAT3print_formatted(VIEW_OFFSET, stdout, "VIEW_OFFSET matrix:\n", // NULL, "%#8.6f ", "\n"); // Build spherical to cartesian transform matrix directly double *mat = (double *)WORLD; //T_view; //WORLD; double cos_lat = f->get_cos_latitude(); //cos(f->get_Latitude()); double sin_lat = f->get_sin_latitude(); //sin(f->get_Latitude()); // using trig identities this: // mat[0] = cos(f->get_Longitude() - FG_PI_2);//cos_lon; // mat[1] = sin(f->get_Longitude() - FG_PI_2);//sin_lon; // becomes this: :-) mat[0] = f->get_sin_longitude(); //cos_lon; mat[1] = -f->get_cos_longitude(); //sin_lon; mat[4] = -cos_lat*mat[1]; //mat[1]=sin_lon; mat[5] = cos_lat*mat[0]; //mat[0]=cos_lon; mat[6] = sin_lat; mat[8] = sin_lat*mat[1]; //mat[1]=sin_lon; mat[9] = -sin_lat*mat[0]; //mat[0]=cos_lon; mat[10] = cos_lat; // BUILD EYE_TO_WORLD = AIRCRAFT * WORLD // and WORLD_TO_EYE = Inverse( EYE_TO_WORLD) concurrently // by Transposing the 3x3 rotation sub-matrix WORLD_TO_EYE[0][0] = EYE_TO_WORLD[0][0] = VIEW_OFFSET[0][0]*mat[0] + VIEW_OFFSET[0][1]*mat[4] + VIEW_OFFSET[0][2]*mat[8]; WORLD_TO_EYE[1][0] = EYE_TO_WORLD[0][1] = VIEW_OFFSET[0][0]*mat[1] + VIEW_OFFSET[0][1]*mat[5] + VIEW_OFFSET[0][2]*mat[9]; WORLD_TO_EYE[2][0] = EYE_TO_WORLD[0][2] = VIEW_OFFSET[0][1]*mat[6] + VIEW_OFFSET[0][2]*mat[10]; WORLD_TO_EYE[0][1] = EYE_TO_WORLD[1][0] = VIEW_OFFSET[1][0]*mat[0] + VIEW_OFFSET[1][1]*mat[4] + VIEW_OFFSET[1][2]*mat[8]; WORLD_TO_EYE[1][1] = EYE_TO_WORLD[1][1] = VIEW_OFFSET[1][0]*mat[1] + VIEW_OFFSET[1][1]*mat[5] + VIEW_OFFSET[1][2]*mat[9]; WORLD_TO_EYE[2][1] = EYE_TO_WORLD[1][2] = VIEW_OFFSET[1][1]*mat[6] + VIEW_OFFSET[1][2]*mat[10]; WORLD_TO_EYE[0][2] = EYE_TO_WORLD[2][0] = VIEW_OFFSET[2][0]*mat[0] + VIEW_OFFSET[2][1]*mat[4] + VIEW_OFFSET[2][2]*mat[8]; WORLD_TO_EYE[1][2] = EYE_TO_WORLD[2][1] = VIEW_OFFSET[2][0]*mat[1] + VIEW_OFFSET[2][1]*mat[5] + VIEW_OFFSET[2][2]*mat[9]; WORLD_TO_EYE[2][2] = EYE_TO_WORLD[2][2] = VIEW_OFFSET[2][1]*mat[6] + VIEW_OFFSET[2][2]*mat[10]; // TRANSLATE TO VIEW POSITION EYE_TO_WORLD[3][0] = view_pos.x(); EYE_TO_WORLD[3][1] = view_pos.y(); EYE_TO_WORLD[3][2] = view_pos.z(); // FILL 0 ENTRIES WORLD_TO_EYE[0][3] = WORLD_TO_EYE[1][3] = WORLD_TO_EYE[2][3] = EYE_TO_WORLD[0][3] = EYE_TO_WORLD[1][3] = EYE_TO_WORLD[2][3] = 0.0; // FILL UNITY ENTRIES WORLD_TO_EYE[3][3] = EYE_TO_WORLD[3][3] = 1.0; /* MAKE THE INVERTED TRANSLATIONS */ mat = (double *)EYE_TO_WORLD; WORLD_TO_EYE[3][0] = -mat[12]*mat[0] -mat[13]*mat[1] -mat[14]*mat[2]; WORLD_TO_EYE[3][1] = -mat[12]*mat[4] -mat[13]*mat[5] -mat[14]*mat[6]; WORLD_TO_EYE[3][2] = -mat[12]*mat[8] -mat[13]*mat[9] -mat[14]*mat[10]; // MAT3print_formatted(EYE_TO_WORLD, stdout, "EYE_TO_WORLD matrix:\n", // NULL, "%#8.6f ", "\n"); // MAT3print_formatted(WORLD_TO_EYE, stdout, "WORLD_TO_EYE matrix:\n", // NULL, "%#8.6f ", "\n"); #endif // defined(FG_VIEW_INLINE_OPTIMIZATIONS) } #if 0 // Reject non viewable spheres from current View Frustrum by Curt // Olson curt@me.umn.edu and Norman Vine nhv@yahoo.com with 'gentle // guidance' from Steve Baker sbaker@link.com int FGView::SphereClip( const Point3D& cp, const double radius ) { double x1, y1; MAT3vec eye; double *mat; double x, y, z; x = cp->x; y = cp->y; z = cp->z; mat = (double *)(WORLD_TO_EYE); eye[2] = x*mat[2] + y*mat[6] + z*mat[10] + mat[14]; // Check near and far clip plane if( ( eye[2] > radius ) || ( eye[2] + radius + current_weather.visibility < 0) ) // ( eye[2] + radius + far_plane < 0) ) { return 1; } // check right and left clip plane (from eye perspective) x1 = radius * fov_x_clip; eye[0] = (x*mat[0] + y*mat[4] + z*mat[8] + mat[12]) * slope_x; if( (eye[2] > -(eye[0]+x1)) || (eye[2] > (eye[0]-x1)) ) { return(1); } // check bottom and top clip plane (from eye perspective) y1 = radius * fov_y_clip; eye[1] = (x*mat[1] + y*mat[5] + z*mat[9] + mat[13]) * slope_y; if( (eye[2] > -(eye[1]+y1)) || (eye[2] > (eye[1]-y1)) ) { return 1; } return 0; } #endif // Destructor FGView::~FGView( void ) { }