// environment_ctrl.cxx -- manager for natural environment information. // // Written by David Megginson, started February 2002. // // Copyright (C) 2002 David Megginson - david@megginson.com // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. // // $Id$ #ifdef HAVE_CONFIG_H # include "config.h" #endif #include #include #include #include #include #include #include #include
#include
#include "environment_mgr.hxx" #include "environment_ctrl.hxx" using std::sort; class metar_filter : public FGAirportSearchFilter { virtual bool pass(FGAirport *a) { return a->getMetar(); } } metar_only; //////////////////////////////////////////////////////////////////////// // Implementation of FGEnvironmentCtrl abstract base class. //////////////////////////////////////////////////////////////////////// FGEnvironmentCtrl::FGEnvironmentCtrl () : _environment(0), _lon_deg(0), _lat_deg(0), _elev_ft(0) { } FGEnvironmentCtrl::~FGEnvironmentCtrl () { } void FGEnvironmentCtrl::setEnvironment (FGEnvironment * environment) { _environment = environment; } void FGEnvironmentCtrl::setLongitudeDeg (double lon_deg) { _lon_deg = lon_deg; } void FGEnvironmentCtrl::setLatitudeDeg (double lat_deg) { _lat_deg = lat_deg; } void FGEnvironmentCtrl::setElevationFt (double elev_ft) { _elev_ft = elev_ft; } void FGEnvironmentCtrl::setPosition (double lon_deg, double lat_deg, double elev_ft) { _lon_deg = lon_deg; _lat_deg = lat_deg; _elev_ft = elev_ft; } //////////////////////////////////////////////////////////////////////// // Implementation of FGUserDefEnvironmentCtrl. //////////////////////////////////////////////////////////////////////// FGUserDefEnvironmentCtrl::FGUserDefEnvironmentCtrl () : _base_wind_speed_node(0), _gust_wind_speed_node(0), _current_wind_speed_kt(0), _delta_wind_speed_kt(0) { } FGUserDefEnvironmentCtrl::~FGUserDefEnvironmentCtrl () { } void FGUserDefEnvironmentCtrl::init () { // Fill in some defaults. if (!fgHasNode("/environment/params/base-wind-speed-kt")) fgSetDouble("/environment/params/base-wind-speed-kt", fgGetDouble("/environment/wind-speed-kt")); if (!fgHasNode("/environment/params/gust-wind-speed-kt")) fgSetDouble("/environment/params/gust-wind-speed-kt", fgGetDouble("/environment/params/base-wind-speed-kt")); _base_wind_speed_node = fgGetNode("/environment/params/base-wind-speed-kt", true); _gust_wind_speed_node = fgGetNode("/environment/params/gust-wind-speed-kt", true); _current_wind_speed_kt = _base_wind_speed_node->getDoubleValue(); _delta_wind_speed_kt = 0.1; } void FGUserDefEnvironmentCtrl::update (double dt) { double base_wind_speed = _base_wind_speed_node->getDoubleValue(); double gust_wind_speed = _gust_wind_speed_node->getDoubleValue(); if (gust_wind_speed < base_wind_speed) { gust_wind_speed = base_wind_speed; _gust_wind_speed_node->setDoubleValue(gust_wind_speed); } if (base_wind_speed == gust_wind_speed) { _current_wind_speed_kt = base_wind_speed; } else { int rn = rand() % 128; int sign = (_delta_wind_speed_kt < 0 ? -1 : 1); double gust = _current_wind_speed_kt - base_wind_speed; double incr = gust / 50; if (rn == 0) _delta_wind_speed_kt = - _delta_wind_speed_kt; else if (rn < 4) _delta_wind_speed_kt -= incr * sign; else if (rn < 16) _delta_wind_speed_kt += incr * sign; _current_wind_speed_kt += _delta_wind_speed_kt; if (_current_wind_speed_kt < base_wind_speed) { _current_wind_speed_kt = base_wind_speed; _delta_wind_speed_kt = 0.01; } else if (_current_wind_speed_kt > gust_wind_speed) { _current_wind_speed_kt = gust_wind_speed; _delta_wind_speed_kt = -0.01; } } if (_environment != 0) _environment->set_wind_speed_kt(_current_wind_speed_kt); } //////////////////////////////////////////////////////////////////////// // Implementation of FGInterpolateEnvironmentCtrl. //////////////////////////////////////////////////////////////////////// FGInterpolateEnvironmentCtrl::FGInterpolateEnvironmentCtrl () { } FGInterpolateEnvironmentCtrl::~FGInterpolateEnvironmentCtrl () { unsigned int i; for (i = 0; i < _boundary_table.size(); i++) delete _boundary_table[i]; for (i = 0; i < _aloft_table.size(); i++) delete _aloft_table[i]; } void FGInterpolateEnvironmentCtrl::init () { read_table(fgGetNode("/environment/config/boundary", true), _boundary_table); read_table(fgGetNode("/environment/config/aloft", true), _aloft_table); } void FGInterpolateEnvironmentCtrl::reinit () { unsigned int i; for (i = 0; i < _boundary_table.size(); i++) delete _boundary_table[i]; for (i = 0; i < _aloft_table.size(); i++) delete _aloft_table[i]; _boundary_table.clear(); _aloft_table.clear(); init(); } void FGInterpolateEnvironmentCtrl::read_table (const SGPropertyNode * node, vector &table) { for (int i = 0; i < node->nChildren(); i++) { const SGPropertyNode * child = node->getChild(i); if ( strcmp(child->getName(), "entry") == 0 && child->getStringValue("elevation-ft", "")[0] != '\0' && ( child->getDoubleValue("elevation-ft") > 0.1 || i == 0 ) ) { bucket * b = new bucket; if (i > 0) b->environment.copy(table[i-1]->environment); b->environment.read(child); b->altitude_ft = b->environment.get_elevation_ft(); table.push_back(b); } } sort(table.begin(), table.end(), bucket::lessThan); } void FGInterpolateEnvironmentCtrl::update (double delta_time_sec) { // FIXME double altitude_ft = fgGetDouble("/position/altitude-ft"); double altitude_agl_ft = fgGetDouble("/position/altitude-agl-ft"); double boundary_transition = fgGetDouble("/environment/config/boundary-transition-ft", 500); // double ground_elevation_ft = altitude_ft - altitude_agl_ft; int length = _boundary_table.size(); if (length > 0) { // boundary table double boundary_limit = _boundary_table[length-1]->altitude_ft; if (boundary_limit >= altitude_agl_ft) { do_interpolate(_boundary_table, altitude_agl_ft, _environment); return; } else if ((boundary_limit + boundary_transition) >= altitude_agl_ft) { // both tables do_interpolate(_boundary_table, altitude_agl_ft, &env1); do_interpolate(_aloft_table, altitude_ft, &env2); double fraction = (altitude_agl_ft - boundary_limit) / boundary_transition; interpolate(&env1, &env2, fraction, _environment); return; } } // aloft table do_interpolate(_aloft_table, altitude_ft, _environment); } void FGInterpolateEnvironmentCtrl::do_interpolate (vector &table, double altitude_ft, FGEnvironment * environment) { int length = table.size(); if (length == 0) return; // Boundary conditions if ((length == 1) || (table[0]->altitude_ft >= altitude_ft)) { environment->copy(table[0]->environment); return; } else if (table[length-1]->altitude_ft <= altitude_ft) { environment->copy(table[length-1]->environment); return; } // Search the interpolation table for (int i = 0; i < length - 1; i++) { if ((i == length - 1) || (table[i]->altitude_ft <= altitude_ft)) { FGEnvironment * env1 = &(table[i]->environment); FGEnvironment * env2 = &(table[i+1]->environment); double fraction; if (table[i]->altitude_ft == table[i+1]->altitude_ft) fraction = 1.0; else fraction = ((altitude_ft - table[i]->altitude_ft) / (table[i+1]->altitude_ft - table[i]->altitude_ft)); interpolate(env1, env2, fraction, environment); return; } } } bool FGInterpolateEnvironmentCtrl::bucket::operator< (const bucket &b) const { return (altitude_ft < b.altitude_ft); } bool FGInterpolateEnvironmentCtrl::bucket::lessThan(bucket *a, bucket *b) { return (a->altitude_ft) < (b->altitude_ft); } //////////////////////////////////////////////////////////////////////// // Implementation of FGMetarEnvironmentCtrl. //////////////////////////////////////////////////////////////////////// FGMetarEnvironmentCtrl::FGMetarEnvironmentCtrl () : env( new FGInterpolateEnvironmentCtrl ), _icao( "" ), metar_loaded( false ), search_interval_sec( 60.0 ), // 1 minute same_station_interval_sec( 900.0 ), // 15 minutes search_elapsed( 9999.0 ), fetch_elapsed( 9999.0 ), last_apt( 0 ), proxy_host( fgGetNode("/sim/presets/proxy/host", true) ), proxy_port( fgGetNode("/sim/presets/proxy/port", true) ), proxy_auth( fgGetNode("/sim/presets/proxy/authentication", true) ), metar_max_age( fgGetNode("/environment/params/metar-max-age-min", true) ), // Interpolation constant definitions. EnvironmentUpdatePeriodSec( 0.2 ), MaxWindChangeKtsSec( 0.2 ), MaxVisChangePercentSec( 0.05 ), MaxPressureChangeInHgSec( 0.0033 ), MaxCloudAltitudeChangeFtSec( 20.0 ), MaxCloudThicknessChangeFtSec( 50.0 ), MaxCloudInterpolationHeightFt( 5000.0 ), MaxCloudInterpolationDeltaFt( 4000.0 ), _error_count( 0 ), _stale_count( 0 ), _dt( 0.0 ), _error_dt( 0.0 ) { #if defined(ENABLE_THREADS) thread = new MetarThread(this); thread->setProcessorAffinity(1); thread->start(); #endif // ENABLE_THREADS } FGMetarEnvironmentCtrl::~FGMetarEnvironmentCtrl () { #if defined(ENABLE_THREADS) thread_stop(); #endif // ENABLE_THREADS delete env; env = NULL; } // use a "command" to set station temp at station elevation static void set_temp_at_altitude( float temp_degc, float altitude_ft ) { SGPropertyNode args; SGPropertyNode *node = args.getNode("temp-degc", 0, true); node->setFloatValue( temp_degc ); node = args.getNode("altitude-ft", 0, true); node->setFloatValue( altitude_ft ); globals->get_commands()->execute("set-outside-air-temp-degc", &args); } static void set_dewpoint_at_altitude( float dewpoint_degc, float altitude_ft ) { SGPropertyNode args; SGPropertyNode *node = args.getNode("dewpoint-degc", 0, true); node->setFloatValue( dewpoint_degc ); node = args.getNode("altitude-ft", 0, true); node->setFloatValue( altitude_ft ); globals->get_commands()->execute("set-dewpoint-temp-degc", &args); } void FGMetarEnvironmentCtrl::update_env_config () { double dir_from; double dir_to; double speed; double gust; double vis; double pressure; double temp; double dewpoint; // If we aren't in the METAR scenario, don't attempt to interpolate. if (strcmp(fgGetString("/environment/weather-scenario", "METAR"), "METAR")) return; if (metar_loaded) { // Generate interpolated values between the METAR and the current // configuration. // Pick up the METAR wind values and convert them into a vector. double metar[2]; double metar_speed = fgGetDouble("/environment/metar/base-wind-speed-kt"); double metar_heading = fgGetDouble("/environment/metar/base-wind-range-from"); metar[0] = metar_speed * sin((metar_heading / 180.0) * M_PI); metar[1] = metar_speed * cos((metar_heading / 180.0) * M_PI); // Convert the current wind values and convert them into a vector double current[2]; double current_speed = fgGetDouble("/environment/config/boundary/entry/wind-speed-kt"); double current_heading = fgGetDouble( "/environment/config/boundary/entry/wind-from-heading-deg"); current[0] = current_speed * sin((current_heading / 180.0) * M_PI); current[1] = current_speed * cos((current_heading / 180.0) * M_PI); // Determine the maximum component-wise value that the wind can change. // First we determine the fraction in the X and Y component, then // factor by the maximum wind change. double x = fabs(current[0] - metar[0]); double y = fabs(current[1] - metar[1]); double dx = x / (x + y); double dy = 1 - dx; double maxdx = dx * MaxWindChangeKtsSec; double maxdy = dy * MaxWindChangeKtsSec; // Interpolate each component separately. current[0] = interpolate_val(current[0], metar[0], maxdx); current[1] = interpolate_val(current[1], metar[1], maxdy); // Now convert back to polar coordinates. if ((current[0] == 0.0) && (current[1] == 0.0)) { // Special case where there is no wind (otherwise atan2 barfs) speed = 0.0; dir_from = current_heading; } else { // Some real wind to convert back from. Work out the speed // and direction value in degrees. speed = sqrt((current[0] * current[0]) + (current[1] * current[1])); dir_from = (atan2(current[0], current[1]) * 180.0 / M_PI); // Normalize the direction. if (dir_from < 0.0) dir_from += 360.0; SG_LOG( SG_GENERAL, SG_DEBUG, "Wind : " << dir_from << "@" << speed); } // Now handle the visibility. We convert both visibility values // to X-values, then interpolate from there, then back to real values. // The length_scale is fixed to 1000m, so the visibility changes by // by MaxVisChangePercentSec or 1000m X MaxVisChangePercentSec, // whichever is more. double currentvis = fgGetDouble("/environment/config/boundary/entry/visibility-m"); double metarvis = fgGetDouble("/environment/metar/min-visibility-m"); double currentxval = log(1000.0 + currentvis); double metarxval = log(1000.0 + metarvis); currentxval = interpolate_val(currentxval, metarxval, MaxVisChangePercentSec); // Now convert back from an X-value to a straightforward visibility. vis = exp(currentxval) - 1000.0; pressure = interpolate_prop( "/environment/config/boundary/entry/pressure-sea-level-inhg", "/environment/metar/pressure-inhg", MaxPressureChangeInHgSec); dir_to = fgGetDouble("/environment/metar/base-wind-range-to"); gust = fgGetDouble("/environment/metar/gust-wind-speed-kt"); temp = fgGetDouble("/environment/metar/temperature-degc"); dewpoint = fgGetDouble("/environment/metar/dewpoint-degc"); // Set the cloud layers by interpolating over the METAR versions. SGPropertyNode * clouds = fgGetNode("/environment/metar/clouds"); vector layers = clouds->getChildren("layer"); vector::const_iterator layer; vector::const_iterator layers_end = layers.end(); const char *cl = "/environment/clouds/layer[%i]"; double aircraft_alt = fgGetDouble("/position/altitude-ft"); char s[128]; int i; for (i = 0, layer = layers.begin(); layer != layers_end; ++layer, i++) { double currentval; double requiredval; // In the case of clouds, we want to avoid writing if nothing has // changed, as these properties are tied to the renderer and will // cause the clouds to be updated, reseting the texture locations. // We don't interpolate the coverage values as no-matter how we // do it, it will be quite a sudden change of texture. Better to // have a single change than four or five. snprintf(s, 128, cl, i); strncat(s, "/coverage", 128); const char* coverage = (*layer)->getStringValue("coverage", "clear"); if (strncmp(fgGetString(s), coverage, 128) != 0) fgSetString(s, coverage); snprintf(s, 128, cl, i); strncat(s, "/elevation-ft", 128); double current_alt = fgGetDouble(s); double required_alt = (*layer)->getDoubleValue("elevation-ft"); if (current_alt < -9000 || required_alt < -9000 || fabs(aircraft_alt - required_alt) > MaxCloudInterpolationHeightFt || fabs(current_alt - required_alt) > MaxCloudInterpolationDeltaFt) { // We don't interpolate any layers that are // - too far above us to be visible // - too far below us to be visible // - with too large a difference to make interpolation sensible // - to or from -9999 (used as a placeholder) // - any values that are too high above us, snprintf(s, 128, cl, i); strncat(s, "/elevation-ft", 128); if (current_alt != required_alt) fgSetDouble(s, required_alt); snprintf(s, 128, cl, i); strncat(s, "/thickness-ft", 128); if (fgGetDouble(s) != (*layer)->getDoubleValue("thickness-ft")) fgSetDouble(s, (*layer)->getDoubleValue("thickness-ft")); } else { // Interpolate the other values in the usual way if (current_alt != required_alt) { current_alt = interpolate_val(current_alt, required_alt, MaxCloudAltitudeChangeFtSec); fgSetDouble(s, current_alt); } snprintf(s, 128, cl, i); strncat(s, "/thickness-ft", 128); currentval = fgGetDouble(s); requiredval = (*layer)->getDoubleValue("thickness-ft"); if (currentval != requiredval) { currentval = interpolate_val(currentval, requiredval, MaxCloudThicknessChangeFtSec); fgSetDouble(s, currentval); } } } } else { // We haven't already loaded a METAR, so apply it immediately. dir_from = fgGetDouble("/environment/metar/base-wind-range-from"); dir_to = fgGetDouble("/environment/metar/base-wind-range-to"); speed = fgGetDouble("/environment/metar/base-wind-speed-kt"); gust = fgGetDouble("/environment/metar/gust-wind-speed-kt"); vis = fgGetDouble("/environment/metar/min-visibility-m"); pressure = fgGetDouble("/environment/metar/pressure-inhg"); temp = fgGetDouble("/environment/metar/temperature-degc"); dewpoint = fgGetDouble("/environment/metar/dewpoint-degc"); // Set the cloud layers by copying over the METAR versions. SGPropertyNode * clouds = fgGetNode("/environment/metar/clouds", true); vector layers = clouds->getChildren("layer"); vector::const_iterator layer; vector::const_iterator layers_end = layers.end(); const char *cl = "/environment/clouds/layer[%i]"; char s[128]; int i; for (i = 0, layer = layers.begin(); layer != layers_end; ++layer, i++) { snprintf(s, 128, cl, i); strncat(s, "/coverage", 128); fgSetString(s, (*layer)->getStringValue("coverage", "clear")); snprintf(s, 128, cl, i); strncat(s, "/elevation-ft", 128); fgSetDouble(s, (*layer)->getDoubleValue("elevation-ft")); snprintf(s, 128, cl, i); strncat(s, "/thickness-ft", 128); fgSetDouble(s, (*layer)->getDoubleValue("thickness-ft")); snprintf(s, 128, cl, i); strncat(s, "/span-m", 128); fgSetDouble(s, 40000.0); } // Force an update of the 3D clouds fgSetDouble("/environment/rebuild-layers", 1.0); } fgSetupWind(dir_from, dir_to, speed, gust); fgDefaultWeatherValue("visibility-m", vis); set_temp_at_altitude(temp, station_elevation_ft); set_dewpoint_at_altitude(dewpoint, station_elevation_ft); fgDefaultWeatherValue("pressure-sea-level-inhg", pressure); // We've now successfully loaded a METAR into the configuration metar_loaded = true; } double FGMetarEnvironmentCtrl::interpolate_prop(const char * currentname, const char * requiredname, double dt) { double currentval = fgGetDouble(currentname); double requiredval = fgGetDouble(requiredname); return interpolate_val(currentval, requiredval, dt); } double FGMetarEnvironmentCtrl::interpolate_val(double currentval, double requiredval, double dt) { double dval = EnvironmentUpdatePeriodSec * dt; if (fabs(currentval - requiredval) < dval) return requiredval; if (currentval < requiredval) return (currentval + dval); if (currentval > requiredval) return (currentval - dval); return requiredval; } void FGMetarEnvironmentCtrl::init () { const SGPropertyNode *longitude = fgGetNode( "/position/longitude-deg", true ); const SGPropertyNode *latitude = fgGetNode( "/position/latitude-deg", true ); metar_loaded = false; bool found_metar = false; long max_age = metar_max_age->getLongValue(); // Don't check max age during init so that we don't loop over a lot // of airports metar if there is a problem. // The update() calls will find a correct metar if things went wrong here metar_max_age->setLongValue(0); while ( !found_metar && (_error_count < 3) ) { const FGAirport* a = globals->get_airports() ->search( longitude->getDoubleValue(), latitude->getDoubleValue(), 360.0, metar_only ); if ( a ) { FGMetarResult result = fetch_data( a->getId() ); if ( result.m != NULL ) { SG_LOG( SG_GENERAL, SG_INFO, "closest station w/ metar = " << a->getId()); last_apt = a; _icao = a->getId(); search_elapsed = 0.0; fetch_elapsed = 0.0; update_metar_properties( result.m ); update_env_config(); env->init(); found_metar = true; } else { // mark as no metar so it doesn't show up in subsequent // searches. SG_LOG( SG_GENERAL, SG_INFO, "no metar at metar = " << a->getId() ); globals->get_airports()->no_metar( a->getId() ); } } } metar_max_age->setLongValue(max_age); } void FGMetarEnvironmentCtrl::reinit () { _error_count = 0; _error_dt = 0.0; metar_loaded = false; env->reinit(); } void FGMetarEnvironmentCtrl::update(double delta_time_sec) { _dt += delta_time_sec; if (_error_count >= 3) return; FGMetarResult result; static const SGPropertyNode *longitude = fgGetNode( "/position/longitude-deg", true ); static const SGPropertyNode *latitude = fgGetNode( "/position/latitude-deg", true ); search_elapsed += delta_time_sec; fetch_elapsed += delta_time_sec; interpolate_elapsed += delta_time_sec; // if time for a new search request, push it onto the request // queue if ( search_elapsed > search_interval_sec ) { const FGAirport* a = globals->get_airports() ->search( longitude->getDoubleValue(), latitude->getDoubleValue(), 360.0, metar_only ); if ( a ) { if ( !last_apt || last_apt->getId() != a->getId() || fetch_elapsed > same_station_interval_sec ) { SG_LOG( SG_GENERAL, SG_INFO, "closest station w/ metar = " << a->getId()); request_queue.push( a->getId() ); last_apt = a; _icao = a->getId(); search_elapsed = 0.0; fetch_elapsed = 0.0; } else { search_elapsed = 0.0; SG_LOG( SG_GENERAL, SG_INFO, "same station, waiting = " << same_station_interval_sec - fetch_elapsed ); } } else { SG_LOG( SG_GENERAL, SG_WARN, "Unable to find any airports with metar" ); } } else if ( interpolate_elapsed > EnvironmentUpdatePeriodSec ) { // Interpolate the current configuration closer to the actual METAR update_env_config(); env->reinit(); interpolate_elapsed = 0.0; } #if !defined(ENABLE_THREADS) // No loader thread running so manually fetch the data string id = ""; while ( !request_queue.empty() ) { id = request_queue.front(); request_queue.pop(); } if ( !id.empty() ) { SG_LOG( SG_GENERAL, SG_INFO, "inline fetching = " << id ); result = fetch_data( id ); result_queue.push( result ); } #endif // ENABLE_THREADS // process any results from the loader. while ( !result_queue.empty() ) { result = result_queue.front(); result_queue.pop(); if ( result.m != NULL ) { update_metar_properties( result.m ); delete result.m; update_env_config(); env->reinit(); } else { // mark as no metar so it doesn't show up in subsequent // searches, and signal an immediate re-search. SG_LOG( SG_GENERAL, SG_WARN, "no metar at station = " << result.icao ); globals->get_airports()->no_metar( result.icao ); search_elapsed = 9999.0; } } env->update(delta_time_sec); } void FGMetarEnvironmentCtrl::setEnvironment (FGEnvironment * environment) { env->setEnvironment(environment); } FGMetarResult FGMetarEnvironmentCtrl::fetch_data( const string &icao ) { FGMetarResult result; result.icao = icao; // if the last error was more than three seconds ago, // then pretent nothing happened. if (_error_dt < 3) { _error_dt += _dt; } else { _error_dt = 0.0; _error_count = 0; } // fetch station elevation if exists const FGAirport* a = globals->get_airports()->search( icao ); if ( a ) { station_elevation_ft = a->getElevation(); } // fetch current metar data try { string host = proxy_host->getStringValue(); string auth = proxy_auth->getStringValue(); string port = proxy_port->getStringValue(); result.m = new FGMetar( icao, host, port, auth); long max_age = metar_max_age->getLongValue(); long age = result.m->getAge_min(); if (max_age && age > max_age) { SG_LOG( SG_GENERAL, SG_WARN, "METAR data too old (" << age << " min)."); delete result.m; result.m = NULL; if (++_stale_count > 10) { _error_count = 1000; throw sg_io_exception("More than 10 stale METAR messages in a row." " Check your system time!"); } } else _stale_count = 0; } catch (const sg_io_exception& e) { SG_LOG( SG_GENERAL, SG_WARN, "Error fetching live weather data: " << e.getFormattedMessage().c_str() ); #if defined(ENABLE_THREADS) if (_error_count++ >= 3) { SG_LOG( SG_GENERAL, SG_WARN, "Stop fetching data permanently."); thread_stop(); } #endif result.m = NULL; } _dt = 0; return result; } void FGMetarEnvironmentCtrl::update_metar_properties( const FGMetar *m ) { int i; double d; char s[128]; fgSetString("/environment/metar/real-metar", m->getData()); // don't update with real weather when we use a custom weather scenario const char *current_scenario = fgGetString("/environment/weather-scenario", "METAR"); if( strcmp(current_scenario, "METAR") && strcmp(current_scenario, "none")) return; fgSetString("/environment/metar/last-metar", m->getData()); fgSetString("/environment/metar/station-id", m->getId()); fgSetDouble("/environment/metar/min-visibility-m", m->getMinVisibility().getVisibility_m() ); fgSetDouble("/environment/metar/max-visibility-m", m->getMaxVisibility().getVisibility_m() ); const SGMetarVisibility *dirvis = m->getDirVisibility(); for (i = 0; i < 8; i++, dirvis++) { const char *min = "/environment/metar/visibility[%d]/min-m"; const char *max = "/environment/metar/visibility[%d]/max-m"; d = dirvis->getVisibility_m(); snprintf(s, 128, min, i); fgSetDouble(s, d); snprintf(s, 128, max, i); fgSetDouble(s, d); } fgSetInt("/environment/metar/base-wind-range-from", m->getWindRangeFrom() ); fgSetInt("/environment/metar/base-wind-range-to", m->getWindRangeTo() ); fgSetDouble("/environment/metar/base-wind-speed-kt", m->getWindSpeed_kt() ); fgSetDouble("/environment/metar/gust-wind-speed-kt", m->getGustSpeed_kt() ); fgSetDouble("/environment/metar/temperature-degc", m->getTemperature_C() ); fgSetDouble("/environment/metar/dewpoint-degc", m->getDewpoint_C() ); fgSetDouble("/environment/metar/rel-humidity-norm", m->getRelHumidity() ); fgSetDouble("/environment/metar/pressure-inhg", m->getPressure_inHg() ); vector cv = m->getClouds(); vector::const_iterator cloud; const char *cl = "/environment/metar/clouds/layer[%i]"; for (i = 0, cloud = cv.begin(); cloud != cv.end(); cloud++, i++) { const char *coverage_string[5] = { "clear", "few", "scattered", "broken", "overcast" }; const double thickness[5] = { 0, 65, 600,750, 1000}; int q; snprintf(s, 128, cl, i); strncat(s, "/coverage", 128); q = cloud->getCoverage(); fgSetString(s, coverage_string[q] ); snprintf(s, 128, cl, i); strncat(s, "/elevation-ft", 128); fgSetDouble(s, cloud->getAltitude_ft() + station_elevation_ft); snprintf(s, 128, cl, i); strncat(s, "/thickness-ft", 128); fgSetDouble(s, thickness[q]); snprintf(s, 128, cl, i); strncat(s, "/span-m", 128); fgSetDouble(s, 40000.0); } for (; i < FGEnvironmentMgr::MAX_CLOUD_LAYERS; i++) { snprintf(s, 128, cl, i); strncat(s, "/coverage", 128); fgSetString(s, "clear"); snprintf(s, 128, cl, i); strncat(s, "/elevation-ft", 128); fgSetDouble(s, -9999); snprintf(s, 128, cl, i); strncat(s, "/thickness-ft", 128); fgSetDouble(s, 0); snprintf(s, 128, cl, i); strncat(s, "/span-m", 128); fgSetDouble(s, 40000.0); } fgSetDouble("/environment/metar/rain-norm", m->getRain()); fgSetDouble("/environment/metar/hail-norm", m->getHail()); fgSetDouble("/environment/metar/snow-norm", m->getSnow()); fgSetBool("/environment/metar/snow-cover", m->getSnowCover()); } #if defined(ENABLE_THREADS) void FGMetarEnvironmentCtrl::thread_stop() { request_queue.push( string() ); // ask thread to terminate thread->join(); } void FGMetarEnvironmentCtrl::MetarThread::run() { while ( true ) { string icao = fetcher->request_queue.pop(); if (icao.empty()) return; SG_LOG( SG_GENERAL, SG_INFO, "Thread: fetch metar data = " << icao ); FGMetarResult result = fetcher->fetch_data( icao ); fetcher->result_queue.push( result ); } } #endif // ENABLE_THREADS // end of environment_ctrl.cxx