// sunpos.c (taken from XEarth) // kirk johnson // july 1993 // // code for calculating the position on the earth's surface for which // the sun is directly overhead (adapted from _practical astronomy // with your calculator, third edition_, peter duffett-smith, // cambridge university press, 1988.) // // Copyright (C) 1989, 1990, 1993, 1994, 1995 Kirk Lauritz Johnson // // Parts of the source code (as marked) are: // Copyright (C) 1989, 1990, 1991 by Jim Frost // Copyright (C) 1992 by Jamie Zawinski // // Permission to use, copy, modify and freely distribute xearth for // non-commercial and not-for-profit purposes is hereby granted // without fee, provided that both the above copyright notice and this // permission notice appear in all copies and in supporting // documentation. // // The author makes no representations about the suitability of this // software for any purpose. It is provided "as is" without express or // implied warranty. // // THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, // INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, // IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, INDIRECT // OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM // LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, // NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN // CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. // // $Id$ // (Log is kept at end of this file) #ifdef HAVE_CONFIG_H # include #endif #include #include #include //#include #include #include #include
#include #include #include #include #include #include "fg_time.hxx" #include "sunpos.hxx" extern SolarSystem *solarSystem; #undef E /* * the epoch upon which these astronomical calculations are based is * 1990 january 0.0, 631065600 seconds since the beginning of the * "unix epoch" (00:00:00 GMT, Jan. 1, 1970) * * given a number of seconds since the start of the unix epoch, * DaysSinceEpoch() computes the number of days since the start of the * astronomical epoch (1990 january 0.0) */ #define EpochStart (631065600) #define DaysSinceEpoch(secs) (((secs)-EpochStart)*(1.0/(24*3600))) /* * assuming the apparent orbit of the sun about the earth is circular, * the rate at which the orbit progresses is given by RadsPerDay -- * FG_2PI radians per orbit divided by 365.242191 days per year: */ #define RadsPerDay (FG_2PI/365.242191) /* * details of sun's apparent orbit at epoch 1990.0 (after * duffett-smith, table 6, section 46) * * Epsilon_g (ecliptic longitude at epoch 1990.0) 279.403303 degrees * OmegaBar_g (ecliptic longitude of perigee) 282.768422 degrees * Eccentricity (eccentricity of orbit) 0.016713 */ #define Epsilon_g (279.403303*(FG_2PI/360)) #define OmegaBar_g (282.768422*(FG_2PI/360)) #define Eccentricity (0.016713) /* * MeanObliquity gives the mean obliquity of the earth's axis at epoch * 1990.0 (computed as 23.440592 degrees according to the method given * in duffett-smith, section 27) */ #define MeanObliquity (23.440592*(FG_2PI/360)) /* static double solve_keplers_equation(double); */ /* static double sun_ecliptic_longitude(time_t); */ static void ecliptic_to_equatorial(double, double, double *, double *); static double julian_date(int, int, int); static double GST(time_t); /* * solve Kepler's equation via Newton's method * (after duffett-smith, section 47) */ /* static double solve_keplers_equation(double M) { double E; double delta; E = M; while (1) { delta = E - Eccentricity*sin(E) - M; if (fabs(delta) <= 1e-10) break; E -= delta / (1 - Eccentricity*cos(E)); } return E; } */ /* compute ecliptic longitude of sun (in radians) (after * duffett-smith, section 47) */ /* static double sun_ecliptic_longitude(time_t ssue) { // time_t ssue; // seconds since unix epoch double D, N; double M_sun, E; double v; D = DaysSinceEpoch(ssue); N = RadsPerDay * D; N = fmod(N, FG_2PI); if (N < 0) N += FG_2PI; M_sun = N + Epsilon_g - OmegaBar_g; if (M_sun < 0) M_sun += FG_2PI; E = solve_keplers_equation(M_sun); v = 2 * atan(sqrt((1+Eccentricity)/(1-Eccentricity)) * tan(E/2)); return (v + OmegaBar_g); } */ /* convert from ecliptic to equatorial coordinates (after * duffett-smith, section 27) */ static void ecliptic_to_equatorial(double lambda, double beta, double *alpha, double *delta) { /* double lambda; ecliptic longitude */ /* double beta; ecliptic latitude */ /* double *alpha; (return) right ascension */ /* double *delta; (return) declination */ double sin_e, cos_e; double sin_l, cos_l; sin_e = sin(MeanObliquity); cos_e = cos(MeanObliquity); sin_l = sin(lambda); cos_l = cos(lambda); *alpha = atan2(sin_l*cos_e - tan(beta)*sin_e, cos_l); *delta = asin(sin(beta)*cos_e + cos(beta)*sin_e*sin_l); } /* computing julian dates (assuming gregorian calendar, thus this is * only valid for dates of 1582 oct 15 or later) (after duffett-smith, * section 4) */ static double julian_date(int y, int m, int d) { /* int y; year (e.g. 19xx) */ /* int m; month (jan=1, feb=2, ...) */ /* int d; day of month */ int A, B, C, D; double JD; /* lazy test to ensure gregorian calendar */ if (y < 1583) { printf("WHOOPS! Julian dates only valid for 1582 oct 15 or later\n"); } if ((m == 1) || (m == 2)) { y -= 1; m += 12; } A = y / 100; B = 2 - A + (A / 4); C = (int)(365.25 * y); D = (int)(30.6001 * (m + 1)); JD = B + C + D + d + 1720994.5; return JD; } /* compute greenwich mean sidereal time (GST) corresponding to a given * number of seconds since the unix epoch (after duffett-smith, * section 12) */ static double GST(time_t ssue) { /* time_t ssue; seconds since unix epoch */ double JD; double T, T0; double UT; struct tm *tm; tm = gmtime(&ssue); JD = julian_date(tm->tm_year+1900, tm->tm_mon+1, tm->tm_mday); T = (JD - 2451545) / 36525; T0 = ((T + 2.5862e-5) * T + 2400.051336) * T + 6.697374558; T0 = fmod(T0, 24.0); if (T0 < 0) T0 += 24; UT = tm->tm_hour + (tm->tm_min + tm->tm_sec / 60.0) / 60.0; T0 += UT * 1.002737909; T0 = fmod(T0, 24.0); if (T0 < 0) T0 += 24; return T0; } /* given a particular time (expressed in seconds since the unix * epoch), compute position on the earth (lat, lon) such that sun is * directly overhead. (lat, lon are reported in radians */ void fgSunPosition(time_t ssue, double *lon, double *lat) { /* time_t ssue; seconds since unix epoch */ /* double *lat; (return) latitude */ /* double *lon; (return) longitude */ /* double lambda; */ double alpha, delta; double tmp; /* lambda = sun_ecliptic_longitude(ssue); */ /* ecliptic_to_equatorial(lambda, 0.0, &alpha, &delta); */ //ecliptic_to_equatorial (solarPosition.lonSun, 0.0, &alpha, &delta); /* ********************************************************************** * NOTE: in the next function, each time the sun's position is updated, the * the sun's longitude is returned from solarSystem->sun. Note that the * sun's position is updated at a much higher frequency than the rate at * which the solar system's rebuilds occur. This is not a problem, however, * because the fgSunPosition we're talking about here concerns the changing * position of the sun due to the daily rotation of the earth. * The ecliptic longitude, however, represents the position of the sun with * respect to the stars, and completes just one cycle over the course of a * year. Its therefore pretty safe to update the sun's longitude only once * every ten minutes. (Comment added by Durk Talsma). ************************************************************************/ ecliptic_to_equatorial( SolarSystem::theSolarSystem->getSun()->getLon(), 0.0, &alpha, &delta ); tmp = alpha - (FG_2PI/24)*GST(ssue); if (tmp < -FG_PI) { do tmp += FG_2PI; while (tmp < -FG_PI); } else if (tmp > FG_PI) { do tmp -= FG_2PI; while (tmp < -FG_PI); } *lon = tmp; *lat = delta; } /* given a particular time expressed in side real time at prime * meridian (GST), compute position on the earth (lat, lon) such that * sun is directly overhead. (lat, lon are reported in radians */ static void fgSunPositionGST(double gst, double *lon, double *lat) { /* time_t ssue; seconds since unix epoch */ /* double *lat; (return) latitude */ /* double *lon; (return) longitude */ /* double lambda; */ double alpha, delta; double tmp; /* lambda = sun_ecliptic_longitude(ssue); */ /* ecliptic_to_equatorial(lambda, 0.0, &alpha, &delta); */ //ecliptic_to_equatorial (solarPosition.lonSun, 0.0, &alpha, &delta); ecliptic_to_equatorial( SolarSystem::theSolarSystem->getSun()->getLon(), 0.0, &alpha, &delta ); // tmp = alpha - (FG_2PI/24)*GST(ssue); tmp = alpha - (FG_2PI/24)*gst; if (tmp < -FG_PI) { do tmp += FG_2PI; while (tmp < -FG_PI); } else if (tmp > FG_PI) { do tmp -= FG_2PI; while (tmp < -FG_PI); } *lon = tmp; *lat = delta; } // update the cur_time_params structure with the current sun position void fgUpdateSunPos( void ) { fgLIGHT *l; fgTIME *t; fgVIEW *v; MAT3vec nup, nsun, v0; fgPoint3d p; double dot, east_dot; double sun_gd_lat, sl_radius; double ntmp; l = &cur_light_params; t = &cur_time_params; v = ¤t_view; printf(" Updating Sun position\n"); // (not sure why there was two) // fgSunPosition(t->cur_time, &l->sun_lon, &sun_gd_lat); fgSunPositionGST(t->gst, &l->sun_lon, &sun_gd_lat); fgGeodToGeoc(sun_gd_lat, 0.0, &sl_radius, &l->sun_gc_lat); p.lon = l->sun_lon; p.lat = l->sun_gc_lat; p.radius = sl_radius; l->fg_sunpos = fgPolarToCart3d(p); printf( " t->cur_time = %ld\n", t->cur_time); printf( " Sun Geodetic lat = %.5f Geocentric lat = %.5f\n", sun_gd_lat, l->sun_gc_lat); // I think this will work better for generating the sun light vector l->sun_vec[0] = l->fg_sunpos.x; l->sun_vec[1] = l->fg_sunpos.y; l->sun_vec[2] = l->fg_sunpos.z; MAT3_NORMALIZE_VEC(l->sun_vec, ntmp); MAT3_SCALE_VEC(l->sun_vec_inv, l->sun_vec, -1.0); // make sure these are directional light sources only l->sun_vec[3] = 0.0; l->sun_vec_inv[3] = 0.0; // printf(" l->sun_vec = %.2f %.2f %.2f\n", l->sun_vec[0], l->sun_vec[1], // l->sun_vec[2]); // calculate the sun's relative angle to local up MAT3_COPY_VEC(nup, v->local_up); nsun[0] = l->fg_sunpos.x; nsun[1] = l->fg_sunpos.y; nsun[2] = l->fg_sunpos.z; MAT3_NORMALIZE_VEC(nup, ntmp); MAT3_NORMALIZE_VEC(nsun, ntmp); l->sun_angle = acos(MAT3_DOT_PRODUCT(nup, nsun)); // printf(" SUN ANGLE relative to current location = %.3f rads.\n", // l->sun_angle); // calculate vector to sun's position on the earth's surface v->to_sun[0] = l->fg_sunpos.x - (v->view_pos.x + scenery.center.x); v->to_sun[1] = l->fg_sunpos.y - (v->view_pos.y + scenery.center.y); v->to_sun[2] = l->fg_sunpos.z - (v->view_pos.z + scenery.center.z); // printf( "Vector to sun = %.2f %.2f %.2f\n", // v->to_sun[0], v->to_sun[1], v->to_sun[2]); // make a vector to the current view position MAT3_SET_VEC(v0, v->view_pos.x, v->view_pos.y, v->view_pos.z); // Given a vector from the view position to the point on the // earth's surface the sun is directly over, map into onto the // local plane representing "horizontal". map_vec_onto_cur_surface_plane(v->local_up, v0, v->to_sun, v->surface_to_sun); MAT3_NORMALIZE_VEC(v->surface_to_sun, ntmp); // printf("Surface direction to sun is %.2f %.2f %.2f\n", // v->surface_to_sun[0], v->surface_to_sun[1], v->surface_to_sun[2]); // printf("Should be close to zero = %.2f\n", // MAT3_DOT_PRODUCT(v->local_up, v->surface_to_sun)); // calculate the angle between v->surface_to_sun and // v->surface_east. We do this so we can sort out the acos() // ambiguity. I wish I could think of a more efficient way ... :-( east_dot = MAT3_DOT_PRODUCT(v->surface_to_sun, v->surface_east); // printf(" East dot product = %.2f\n", east_dot); // calculate the angle between v->surface_to_sun and // v->surface_south. this is how much we have to rotate the sky // for it to align with the sun dot = MAT3_DOT_PRODUCT(v->surface_to_sun, v->surface_south); // printf(" Dot product = %.2f\n", dot); if ( east_dot >= 0 ) { l->sun_rotation = acos(dot); } else { l->sun_rotation = -acos(dot); } // printf(" Sky needs to rotate = %.3f rads = %.1f degrees.\n", // angle, angle * RAD_TO_DEG); */ } // $Log$ // Revision 1.12 1998/09/15 04:27:50 curt // Changes for new astro code. // // Revision 1.11 1998/08/12 21:13:22 curt // Optimizations by Norman Vine. // // Revision 1.10 1998/07/22 21:45:39 curt // fg_time.cxx: Removed call to ctime() in a printf() which should be harmless // but seems to be triggering a bug. // light.cxx: Added code to adjust fog color based on sunrise/sunset effects // and view orientation. This is an attempt to match the fog color to the // sky color in the center of the screen. You see discrepancies at the // edges, but what else can be done? // sunpos.cxx: Caculate local direction to sun here. (what compass direction // do we need to face to point directly at sun) // // Revision 1.9 1998/07/08 14:48:39 curt // polar3d.h renamed to polar3d.hxx // // Revision 1.8 1998/05/02 01:53:18 curt // Fine tuning mktime() support because of varying behavior on different // platforms. // // Revision 1.7 1998/04/30 12:36:05 curt // C++-ifying a couple source files. // // Revision 1.6 1998/04/28 01:22:18 curt // Type-ified fgTIME and fgVIEW. // // Revision 1.5 1998/04/26 05:10:05 curt // "struct fgLIGHT" -> "fgLIGHT" because fgLIGHT is typedef'd. // // Revision 1.4 1998/04/25 22:06:34 curt // Edited cvs log messages in source files ... bad bad bad! // // Revision 1.3 1998/04/25 20:24:03 curt // Cleaned up initialization sequence to eliminate interdependencies // between sun position, lighting, and view position. This creates a // valid single pass initialization path. // // Revision 1.2 1998/04/24 00:52:31 curt // Wrapped "#include " in "#ifdef HAVE_CONFIG_H" // Fog color fixes. // Separated out lighting calcs into their own file. // // Revision 1.1 1998/04/22 13:24:07 curt // C++ - ifiing the code a bit. // Starting to reorginize some of the lighting calcs to use a table lookup. // // Revision 1.27 1998/04/03 22:12:57 curt // Converting to Gnu autoconf system. // Centralized time handling differences. // // Revision 1.26 1998/02/23 19:08:00 curt // Incorporated Durk's Astro/ tweaks. Includes unifying the sun position // calculation code between sun display, and other FG sections that use this // for things like lighting. // // Revision 1.25 1998/02/09 15:07:53 curt // Minor tweaks. // // Revision 1.24 1998/01/27 00:48:07 curt // Incorporated Paul Bleisch's new debug message // system and commandline/config file processing code. // // Revision 1.23 1998/01/19 19:27:21 curt // Merged in make system changes from Bob Kuehne // This should simplify things tremendously. // // Revision 1.22 1998/01/19 18:40:40 curt // Tons of little changes to clean up the code and to remove fatal errors // when building with the c++ compiler. // // Revision 1.21 1997/12/30 23:10:19 curt // Calculate lighting parameters here. // // Revision 1.20 1997/12/30 22:22:43 curt // Further integration of event manager. // // Revision 1.19 1997/12/30 20:47:59 curt // Integrated new event manager with subsystem initializations. // // Revision 1.18 1997/12/23 04:58:40 curt // Tweaked the sky coloring a bit to build in structures to allow finer rgb // control. // // Revision 1.17 1997/12/15 23:55:08 curt // Add xgl wrappers for debugging. // Generate terrain normals on the fly. // // Revision 1.16 1997/12/11 04:43:57 curt // Fixed sun vector and lighting problems. I thing the moon is now lit // correctly. // // Revision 1.15 1997/12/10 22:37:55 curt // Prepended "fg" on the name of all global structures that didn't have it yet. // i.e. "struct WEATHER {}" became "struct fgWEATHER {}" // // Revision 1.14 1997/12/09 04:25:39 curt // Working on adding a global lighting params structure. // // Revision 1.13 1997/11/25 19:25:42 curt // Changes to integrate Durk's moon/sun code updates + clean up. // // Revision 1.12 1997/11/15 18:15:39 curt // Reverse direction of sun vector, so object normals can be more normal. // // Revision 1.11 1997/10/28 21:07:21 curt // Changed GLUT/ -> Main/ // // Revision 1.10 1997/09/13 02:00:09 curt // Mostly working on stars and generating sidereal time for accurate star // placement. // // Revision 1.9 1997/09/05 14:17:31 curt // More tweaking with stars. // // Revision 1.8 1997/09/05 01:36:04 curt // Working on getting stars right. // // Revision 1.7 1997/09/04 02:17:40 curt // Shufflin' stuff. // // Revision 1.6 1997/08/27 03:30:37 curt // Changed naming scheme of basic shared structures. // // Revision 1.5 1997/08/22 21:34:41 curt // Doing a bit of reorganizing and house cleaning. // // Revision 1.4 1997/08/19 23:55:09 curt // Worked on better simulating real lighting. // // Revision 1.3 1997/08/13 20:23:49 curt // The interface to sunpos now updates a global structure rather than returning // current sun position. // // Revision 1.2 1997/08/06 00:24:32 curt // Working on correct real time sun lighting. // // Revision 1.1 1997/08/01 15:27:56 curt // Initial revision. //