// ATCutils.cxx - Utility functions for the ATC / AI system // // Written by David Luff, started March 2002. // // Copyright (C) 2002 David C Luff - david.luff@nottingham.ac.uk // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. #ifdef HAVE_CONFIG_H # include #endif #include #include #include #include #include #include #include
#include "ATCutils.hxx" #include "ATCProjection.hxx" static const string nums[10] = {"zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "niner"}; static const string letters[LTRS] = { "alpha", "bravo", "charlie", "delta", "echo", "foxtrot", "golf", "hotel", "india", "juliet", "kilo", "lima", "mike", "november", "oscar", "papa", "quebec", "romeo", "sierra", "tango", "uniform", "victor", "whiskey", "xray", "yankee", "zulu" }; // Convert any number to spoken digits string ConvertNumToSpokenDigits(const string &n) { //cout << "n = " << n << endl; static const string pt = "decimal"; string str = ""; for(unsigned int i=0; i26 string GetPhoneticLetter(const int i) { return(letters[i % LTRS]); } // Return the phonetic letter of a character in the range a-z or A-Z. // Currently always returns prefixed by lowercase. string GetPhoneticLetter(const char c) { return GetPhoneticLetter(int(tolower(c) - 'a')); } // Get the compass direction associated with a heading in degrees // Currently returns 8 direction resolution (N, NE, E etc...) // Might be modified in future to return 4, 8 or 16 resolution but defaulting to 8. string GetCompassDirection(double h) { while(h < 0.0) h += 360.0; while(h > 360.0) h -= 360.0; if(h < 22.5 || h > 337.5) { return("North"); } else if(h < 67.5) { return("North-East"); } else if(h < 112.5) { return("East"); } else if(h < 157.5) { return("South-East"); } else if(h < 202.5) { return("South"); } else if(h < 247.5) { return("South-West"); } else if(h < 292.5) { return("West"); } else { return("North-West"); } } //================================================================================================================ // Given two positions (lat & lon in degrees), get the HORIZONTAL separation (in meters) double dclGetHorizontalSeparation(const SGGeod& pos1, const SGGeod& pos2) { double x; //East-West separation double y; //North-South separation double z; //Horizontal separation - z = sqrt(x^2 + y^2) double lat1 = pos1.getLatitudeRad(); double lon1 = pos1.getLongitudeRad(); double lat2 = pos2.getLatitudeRad(); double lon2 = pos2.getLongitudeRad(); y = sin(fabs(lat1 - lat2)) * SG_EQUATORIAL_RADIUS_M; x = sin(fabs(lon1 - lon2)) * SG_EQUATORIAL_RADIUS_M * (cos((lat1 + lat2) / 2.0)); z = sqrt(x*x + y*y); return(z); } // Given a point and a line, get the HORIZONTAL shortest distance from the point to a point on the line. // Expects to be fed orthogonal co-ordinates, NOT lat & lon ! // The units of the separation will be those of the input. double dclGetLinePointSeparation(double px, double py, double x1, double y1, double x2, double y2) { double vecx = x2-x1; double vecy = y2-y1; double magline = sqrt(vecx*vecx + vecy*vecy); double u = ((px-x1)*(x2-x1) + (py-y1)*(y2-y1)) / (magline * magline); double x0 = x1 + u*(x2-x1); double y0 = y1 + u*(y2-y1); vecx = px - x0; vecy = py - y0; double d = sqrt(vecx*vecx + vecy*vecy); if(d < 0) { d *= -1; } return(d); } // Given a position (lat/lon/elev), heading and vertical angle (degrees), and distance (meters), calculate the new position. // This function assumes the world is spherical. If geodetic accuracy is required use the functions is sg_geodesy instead! // Assumes that the ground is not hit!!! Expects heading and angle in degrees, distance in meters. SGGeod dclUpdatePosition(const SGGeod& pos, double heading, double angle, double distance) { // FIXME: use SGGeodesy instead ... //cout << setprecision(10) << pos.lon() << ' ' << pos.lat() << '\n'; heading *= DCL_DEGREES_TO_RADIANS; angle *= DCL_DEGREES_TO_RADIANS; double lat = pos.getLatitudeRad(); double lon = pos.getLongitudeRad(); double elev = pos.getElevationM(); //cout << setprecision(10) << lon*DCL_RADIANS_TO_DEGREES << ' ' << lat*DCL_RADIANS_TO_DEGREES << '\n'; double horiz_dist = distance * cos(angle); double vert_dist = distance * sin(angle); double north_dist = horiz_dist * cos(heading); double east_dist = horiz_dist * sin(heading); //cout << distance << ' ' << horiz_dist << ' ' << vert_dist << ' ' << north_dist << ' ' << east_dist << '\n'; double delta_lat = asin(north_dist / (double)SG_EQUATORIAL_RADIUS_M); double delta_lon = asin(east_dist / (double)SG_EQUATORIAL_RADIUS_M) * (1.0 / cos(lat)); // I suppose really we should use the average of the original and new lat but we'll assume that this will be good enough. //cout << delta_lon*DCL_RADIANS_TO_DEGREES << ' ' << delta_lat*DCL_RADIANS_TO_DEGREES << '\n'; lat += delta_lat; lon += delta_lon; elev += vert_dist; //cout << setprecision(10) << lon*DCL_RADIANS_TO_DEGREES << ' ' << lat*DCL_RADIANS_TO_DEGREES << '\n'; //cout << setprecision(15) << DCL_DEGREES_TO_RADIANS * DCL_RADIANS_TO_DEGREES << '\n'; return SGGeod::fromRadM(lon, lat, elev); } // Get a heading in degrees from one lat/lon to another. // This function assumes the world is spherical. If geodetic accuracy is required use the functions is sg_geodesy instead! // Warning - at the moment we are not checking for identical points - currently it returns 0 in this instance. double GetHeadingFromTo(const SGGeod& A, const SGGeod& B) { double latA = A.getLatitudeRad(); double lonA = A.getLongitudeRad(); double latB = B.getLatitudeRad(); double lonB = B.getLongitudeRad(); double xdist = sin(lonB - lonA) * (double)SG_EQUATORIAL_RADIUS_M * cos((latA+latB)/2.0); double ydist = sin(latB - latA) * (double)SG_EQUATORIAL_RADIUS_M; double heading = atan2(xdist, ydist) * DCL_RADIANS_TO_DEGREES; return heading < 0.0 ? heading + 360 : heading; } // Given a heading (in degrees), bound it from 0 -> 360 void dclBoundHeading(double &hdg) { while(hdg < 0.0) { hdg += 360.0; } while(hdg > 360.0) { hdg -= 360.0; } } // smallest difference between two angles in degrees // difference is negative if a1 > a2 and positive if a2 > a1 double GetAngleDiff_deg( const double &a1, const double &a2) { double a3 = a2 - a1; while (a3 < 180.0) a3 += 360.0; while (a3 > 180.0) a3 -= 360.0; return a3; } // Runway stuff // Given (lon/lat/elev) and an FGRunway struct, determine if the point lies on the runway bool OnRunway(const SGGeod& pt, const FGRunwayBase* rwy) { FGATCAlignedProjection ortho; SGGeod centre = SGGeod::fromDegM(rwy->longitude(), rwy->latitude(), 0); // We don't need the elev ortho.Init(centre, rwy->headingDeg()); SGVec3d xyc = ortho.ConvertToLocal(centre); SGVec3d xyp = ortho.ConvertToLocal(pt); //cout << "Length offset = " << fabs(xyp.y() - xyc.y()) << '\n'; //cout << "Width offset = " << fabs(xyp.x() - xyc.x()) << '\n'; if((fabs(xyp.y() - xyc.y()) < ((rwy->lengthFt()/2.0) + 5.0)) && (fabs(xyp.x() - xyc.x()) < (rwy->widthFt()/2.0))) { return(true); } return(false); }