#include "Math.hpp" #include "Atmosphere.hpp" namespace yasim { // Copied from McCormick, who got it from "The ARDC Model Atmosphere" // Note that there's an error in the text in the first entry, // McCormick lists 299.16/101325/1.22500, but those don't agree with // R=287. I chose to correct the temperature to 288.20, since 79F is // pretty hot for a "standard" atmosphere. // meters kelvin Pa kg/m^3 float Atmosphere::data[][4] = {{ 0, 288.20, 101325, 1.22500 }, { 900, 282.31, 90971, 1.12260 }, { 1800, 276.46, 81494, 1.02690 }, { 2700, 270.62, 72835, 0.93765 }, { 3600, 264.77, 64939, 0.85445 }, { 4500, 258.93, 57752, 0.77704 }, { 5400, 253.09, 51226, 0.70513 }, { 6300, 247.25, 45311, 0.63845 }, { 7200, 241.41, 39963, 0.57671 }, { 8100, 235.58, 35140, 0.51967 }, { 9000, 229.74, 30800, 0.46706 }, { 9900, 223.91, 26906, 0.41864 }, { 10800, 218.08, 23422, 0.37417 }, { 11700, 216.66, 20335, 0.32699 }, { 12600, 216.66, 17654, 0.28388 }, { 13500, 216.66, 15327, 0.24646 }, { 14400, 216.66, 13308, 0.21399 }, { 15300, 216.66, 11555, 0.18580 }, { 16200, 216.66, 10033, 0.16133 }, { 17100, 216.66, 8712, 0.14009 }, { 18000, 216.66, 7565, 0.12165 }, { 18900, 216.66, 6570, 0.10564 }}; // Universal gas constant for air, in SI units. P = R * rho * T. // P in pascals (N/m^2), rho is kg/m^3, T in kelvin. const float R = 287.1; // Specific heat ratio for air, at "low" temperatures. const float GAMMA = 1.4; float Atmosphere::getStdTemperature(float alt) { return getRecord(alt, 1); } float Atmosphere::getStdPressure(float alt) { return getRecord(alt, 2); } float Atmosphere::getStdDensity(float alt) { return getRecord(alt, 3); } float Atmosphere::calcVEAS(float spd, float pressure, float temp) { static float rho0 = getStdDensity(0); float densityRatio = calcDensity(pressure, temp) / rho0; return spd * Math::sqrt(densityRatio); } float Atmosphere::calcVCAS(float spd, float pressure, float temp) { // Stolen shamelessly from JSBSim. Constants that appear: // 2/5 == gamma-1 // 5/12 == 1/(gamma+1) // 4/5 == 2*(gamma-1) // 14/5 == 2*gamma // 28/5 == 4*gamma // 144/25 == (gamma+1)^2 float m2 = calcMach(spd, temp); m2 = m2*m2; // mach^2 float cp; // pressure coefficient if(m2 < 1) { // (1+(mach^2)/5)^(gamma/(gamma-1)) cp = Math::pow(1+0.2*m2, 3.5); } else { float tmp0 = ((144/25.) * m2) / (28/5.*m2 - 4/5.); float tmp1 = ((14/5.) * m2 - (2/5.)) * (5/12.); cp = Math::pow(tmp0, 3.5) * tmp1; } // Conditions at sea level float p0 = getStdPressure(0); float rho0 = getStdDensity(0); float tmp = Math::pow((pressure/p0)*(cp-1) + 1, (2/7.)); return Math::sqrt((7*p0/rho0)*(tmp-1)); } float Atmosphere::calcDensity(float pressure, float temp) { return pressure / (R * temp); } float Atmosphere::calcMach(float spd, float temp) { return spd / Math::sqrt(GAMMA * R * temp); } void Atmosphere::calcStaticAir(float p0, float t0, float d0, float v, float* pOut, float* tOut, float* dOut) { const static float C0 = ((GAMMA-1)/(2*R*GAMMA)); const static float C1 = 1/(GAMMA-1); *tOut = t0 + (v*v) * C0; *dOut = d0 * Math::pow(*tOut / t0, C1); *pOut = (*dOut) * R * (*tOut); } float Atmosphere::getRecord(float alt, int recNum) { int hi = (sizeof(data) / (4*sizeof(float))) - 1; int lo = 0; // safety valve, clamp to the edges of the table if(alt < data[0][0]) hi=1; else if(alt > data[hi][0]) lo = hi-1; // binary search while(1) { if(hi-lo == 1) break; int mid = (hi+lo)>>1; if(alt < data[mid][0]) hi = mid; else lo = mid; } // interpolate float frac = (alt - data[lo][0])/(data[hi][0] - data[lo][0]); float a = data[lo][recNum]; float b = data[hi][recNum]; return a + frac * (b-a); } }; // namespace yasim