// flight.c -- a general interface to the various flight models // // Written by Curtis Olson, started May 1997. // // Copyright (C) 1997 Curtis L. Olson - curt@infoplane.com // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. // // $Id$ #include <stdio.h> #include <Debug/logstream.hxx> #include <FDM/External/external.hxx> #include <FDM/LaRCsim/ls_interface.h> #include <Include/fg_constants.h> #include <Math/fg_geodesy.hxx> #include <Time/timestamp.hxx> #include "flight.hxx" #include "JSBsim.hxx" #include "LaRCsim.hxx" // base_fdm_state is the internal state that is updated in integer // multiples of "dt". This leads to "jitter" with respect to the real // world time, so we introduce cur_fdm_state which is extrapolated by // the difference between sim time and real world time FGInterface cur_fdm_state; FGInterface base_fdm_state; // Extrapolate fdm based on time_offset (in usec) void FGInterface::extrapolate( int time_offset ) { double dt = time_offset / 1000000.0; cout << "extrapolating FDM by dt = " << dt << endl; double lat = geodetic_position_v[0] + geocentric_rates_v[0] * dt; double lat_geoc = geocentric_position_v[0] + geocentric_rates_v[0] * dt; double lon = geodetic_position_v[1] + geocentric_rates_v[1] * dt; double lon_geoc = geocentric_position_v[1] + geocentric_rates_v[1] * dt; double alt = geodetic_position_v[2] + geocentric_rates_v[2] * dt; double radius = geocentric_position_v[2] + geocentric_rates_v[2] * dt; geodetic_position_v[0] = lat; geocentric_position_v[0] = lat_geoc; geodetic_position_v[1] = lon; geocentric_position_v[1] = lon_geoc; geodetic_position_v[2] = alt; geocentric_position_v[2] = radius; } // Initialize the flight model parameters int fgFDMInit(int model, FGInterface& f, double dt) { double save_alt = 0.0; FG_LOG( FG_FLIGHT ,FG_INFO, "Initializing flight model" ); base_fdm_state = f; if ( model == FGInterface::FG_SLEW ) { // fgSlewInit(dt); } else if ( model == FGInterface::FG_JSBSIM ) { fgJSBsimInit(dt); fgJSBsim_2_FGInterface(base_fdm_state); } else if ( model == FGInterface::FG_LARCSIM ) { // lets try to avoid really screwing up the LaRCsim model if ( base_fdm_state.get_Altitude() < -9000.0 ) { save_alt = base_fdm_state.get_Altitude(); base_fdm_state.set_Altitude( 0.0 ); } // translate FG to LaRCsim structure FGInterface_2_LaRCsim(base_fdm_state); // initialize LaRCsim fgLaRCsimInit(dt); FG_LOG( FG_FLIGHT, FG_INFO, "FG pos = " << base_fdm_state.get_Latitude() ); // translate LaRCsim back to FG structure fgLaRCsim_2_FGInterface(base_fdm_state); // but lets restore our original bogus altitude when we are done if ( save_alt < -9000.0 ) { base_fdm_state.set_Altitude( save_alt ); } } else if ( model == FGInterface::FG_EXTERNAL ) { fgExternalInit(base_fdm_state); } else { FG_LOG( FG_FLIGHT, FG_WARN, "Unimplemented flight model == " << model ); } // set valid time for this record base_fdm_state.stamp_time(); f = base_fdm_state; return 1; } // Run multiloop iterations of the flight model int fgFDMUpdate(int model, FGInterface& f, int multiloop, int time_offset) { double time_step, start_elev, end_elev; // printf("Altitude = %.2f\n", FG_Altitude * 0.3048); // set valid time for this record base_fdm_state.stamp_time(); time_step = (1.0 / DEFAULT_MODEL_HZ) * multiloop; start_elev = base_fdm_state.get_Altitude(); if ( model == FGInterface::FG_SLEW ) { // fgSlewUpdate(f, multiloop); } else if ( model == FGInterface::FG_JSBSIM ) { fgJSBsimUpdate(base_fdm_state, multiloop); f = base_fdm_state; } else if ( model == FGInterface::FG_LARCSIM ) { fgLaRCsimUpdate(base_fdm_state, multiloop); // extrapolate position based on actual time // f = extrapolate_fdm( base_fdm_state, time_offset ); f = base_fdm_state; } else if ( model == FGInterface::FG_EXTERNAL ) { // fgExternalUpdate(f, multiloop); FGTimeStamp current; current.stamp(); f = base_fdm_state; f.extrapolate( current - base_fdm_state.get_time_stamp() ); } else { FG_LOG( FG_FLIGHT, FG_WARN, "Unimplemented flight model == " << model ); } end_elev = base_fdm_state.get_Altitude(); if ( time_step > 0.0 ) { // feet per second base_fdm_state.set_Climb_Rate( (end_elev - start_elev) / time_step ); } return 1; } // Set the altitude (force) void fgFDMForceAltitude(int model, double alt_meters) { double sea_level_radius_meters; double lat_geoc; // Set the FG variables first fgGeodToGeoc( base_fdm_state.get_Latitude(), alt_meters, &sea_level_radius_meters, &lat_geoc); base_fdm_state.set_Altitude( alt_meters * METER_TO_FEET ); base_fdm_state.set_Radius_to_vehicle( base_fdm_state.get_Altitude() + (sea_level_radius_meters * METER_TO_FEET) ); // additional work needed for some flight models if ( model == FGInterface::FG_LARCSIM ) { ls_ForceAltitude( base_fdm_state.get_Altitude() ); } } // Set the local ground elevation void fgFDMSetGroundElevation(int model, double ground_meters) { base_fdm_state.set_Runway_altitude( ground_meters * METER_TO_FEET ); cur_fdm_state.set_Runway_altitude( ground_meters * METER_TO_FEET ); }