/******************************************************************************* Module: FGUtility.cpp Author: Jon Berndt Date started: 01/09/99 Purpose: Contains utility classes for the FG FDM Called by: FGPosition, et. al. ------------- Copyright (C) 1999 Jon S. Berndt (jsb@hal-pc.org) ------------- This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. Further information about the GNU General Public License can also be found on the world wide web at http://www.gnu.org. FUNCTIONAL DESCRIPTION -------------------------------------------------------------------------------- This class is a container for all utility classes used by the flight dynamics model. ARGUMENTS -------------------------------------------------------------------------------- HISTORY -------------------------------------------------------------------------------- 01/09/99 JSB Created *******************************************************************************/ /******************************************************************************* DEFINES *******************************************************************************/ /******************************************************************************** INCLUDES *******************************************************************************/ #include "FGUtility.h" #include "FGState.h" #include #ifndef __BORLANDC__ #include #endif /******************************************************************************* ************************************ CODE ************************************** *******************************************************************************/ const float EarthRadSqrd = 437882827922500.0; const float OneSecond = 4.848136811E-6; const float Eccentricity = 0.996647186; const float EccentSqrd = Eccentricity*Eccentricity; const float EPS = 0.081819221; FGUtility::FGUtility() { } FGUtility::~FGUtility() { } float FGUtility::ToGeodetic() { float GeodeticLat, Latitude, Radius, Altitude, SeaLevelR; float tanLat, xAlpha, muAlpha, sinmuAlpha, denom, rhoAlpha, dMu; float lPoint, lambdaSL, sinlambdaSL, dLambda, rAlpha; Latitude = State->Getlatitude(); Radius = State->Geth() + State->EarthRad; if (( M_PI_2 - Latitude < OneSecond) || ( M_PI_2 + Latitude < OneSecond)) { // Near a pole GeodeticLat = Latitude; SeaLevelR = State->EarthRad * Eccentricity; Altitude = Radius - SeaLevelR; } else { tanLat = tan(Latitude); xAlpha = Eccentricity*State->EarthRad / sqrt(tanLat*tanLat + EccentSqrd); muAlpha = atan2(sqrt(EarthRadSqrd - xAlpha*xAlpha), Eccentricity*xAlpha); if (Latitude < 0.0) muAlpha = -muAlpha; sinmuAlpha = sin(muAlpha); dLambda = muAlpha - Latitude; rAlpha = xAlpha / cos(Latitude); lPoint = Radius - rAlpha; Altitude = lPoint*cos(dLambda); denom = sqrt(1-EPS*EPS*sinmuAlpha*sinmuAlpha); rhoAlpha = State->EarthRad*(1.0 - EPS) / (denom*denom*denom); dMu = atan2(lPoint*sin(dLambda),rhoAlpha + Altitude); State->SetGeodeticLat(muAlpha - dMu); lambdaSL = atan(EccentSqrd*tan(GeodeticLat)); sinlambdaSL = sin(lambdaSL); SeaLevelR = sqrt(EarthRadSqrd / (1 + (1/EccentSqrd - 1.0)* sinlambdaSL*sinlambdaSL)); } return 0.0; } float FGUtility:: FromGeodetic() { float lambdaSL, sinlambdaSL, coslambdaSL, sinMu, cosMu, py, px; float Altitude, SeaLevelR; lambdaSL = atan(EccentSqrd*tan(State->GetGeodeticLat())); sinlambdaSL = sin(lambdaSL); coslambdaSL = cos(lambdaSL); sinMu = sin(State->GetGeodeticLat()); cosMu = cos(State->GetGeodeticLat()); SeaLevelR = sqrt(EarthRadSqrd / (1 + ((1/EccentSqrd)-1)*sinlambdaSL*sinlambdaSL)); px = SeaLevelR*coslambdaSL + Altitude*cosMu; py = SeaLevelR*sinlambdaSL + Altitude*sinMu; State->Setlatitude(atan2(py,px)); return 0.0; }