// // getapt.cxx -- generate airport scenery from the given definition file // // Written by Curtis Olson, started September 1998. // // Copyright (C) 1998 Curtis L. Olson - curt@me.umn.edu // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. // // $Id$ // (Log is kept at end of this file) #include // Standard C++ string library #include #include "Include/fg_stl_config.h" #ifdef NEEDNAMESPACESTD using namespace std; #endif #include #include #include #include #include #include #include // #include #include "genapt.hxx" typedef vector < fgPoint3d > container; typedef container::iterator iterator; typedef container::const_iterator const_iterator; // Calculate distance between to fgPoint3d's static double calc_dist(const fgPoint3d& p1, const fgPoint3d& p2) { double x, y, z; x = p1.x - p2.x; y = p1.y - p2.y; z = p1.z - p2.z; return sqrt(x*x + y*y + z*z); } // convert a geodetic point lon(degrees), lat(degrees), elev(meter) to a // cartesian point static fgPoint3d geod_to_cart(fgPoint3d geod) { fgPoint3d cart; fgPoint3d geoc; double sl_radius; // printf("A geodetic point is (%.2f, %.2f, %.2f)\n", geod[0], // geod[1], geod[2]); geoc.lon = geod.lon*DEG_TO_RAD; fgGeodToGeoc(geod.lat*DEG_TO_RAD, geod.radius, &sl_radius, &geoc.lat); // printf("A geocentric point is (%.2f, %.2f, %.2f)\n", gc_lon, // gc_lat, sl_radius+geod[2]); */ geoc.radius = sl_radius + geod.radius; cart = fgPolarToCart3d(geoc); // printf("A cart point is (%.8f, %.8f, %.8f)\n", cp.x, cp.y, cp.z); return cart; } #define FG_APT_BASE_TEX_CONSTANT 2000.0 #ifdef OLD_TEX_COORDS // Calculate texture coordinates for a given point. static fgPoint3d calc_tex_coords(const fgPoint3d& p) { fgPoint3d tex; cout << "Texture coordinates = " << FG_APT_BASE_TEX_CONSTANT * p.lon << " " << FG_APT_BASE_TEX_CONSTANT * p.lat << "\n"; tex.x = fmod(FG_APT_BASE_TEX_CONSTANT * p.lon, 10.0); tex.y = fmod(FG_APT_BASE_TEX_CONSTANT * p.lat, 10.0); if ( tex.x < 0.0 ) { tex.x += 10.0; } if ( tex.y < 0.0 ) { tex.y += 10.0; } cout << "Texture coordinates = " << tex.x << " " << tex.y << "\n"; return tex; } #endif // Calculate texture coordinates for a given point. static fgPoint3d calc_tex_coords(double *node, fgPoint3d *ref) { fgPoint3d cp; fgPoint3d pp; cp.x = node[0] + ref->x; cp.y = node[1] + ref->y; cp.z = node[2] + ref->z; pp = fgCartToPolar3d(cp); pp.lon = fmod(FG_APT_BASE_TEX_CONSTANT * pp.lon, 10.0); pp.lat = fmod(FG_APT_BASE_TEX_CONSTANT * pp.lat, 10.0); if ( pp.lon < 0.0 ) { pp.lon += 10.0; } if ( pp.lat < 0.0 ) { pp.lat += 10.0; } return(pp); } // generate the actual base area for the airport static void gen_base( const fgPoint3d& average, const container& perimeter, fgTILE *t) { GLint display_list; fgPoint3d cart, cart_trans, tex; MAT3vec normal; double dist, max_dist, temp; int center_num, i; fgFRAGMENT fragment; max_dist = 0.0; cout << "generating airport base for size = " << perimeter.size() << "\n"; fragment.init(); fragment.tile_ptr = t; // find airport base material in the properties list if ( ! material_mgr.find( APT_BASE_MATERIAL, fragment.material_ptr )) { fgPrintf( FG_TERRAIN, FG_ALERT, "Ack! unknown material name = %s in fgAptGenerat()\n", APT_BASE_MATERIAL ); } printf(" tile center = %.2f %.2f %.2f\n", t->center.x, t->center.y, t->center.z); printf(" airport center = %.2f %.2f %.2f\n", average.x, average.y, average.z); fragment.center.x = average.x; fragment.center.y = average.y; fragment.center.z = average.z; normal[0] = average.x; normal[1] = average.y; normal[2] = average.z; MAT3_NORMALIZE_VEC(normal, temp); display_list = xglGenLists(1); xglNewList(display_list, GL_COMPILE); xglBegin(GL_TRIANGLE_FAN); // first point center of fan cart_trans.x = average.x - t->center.x; cart_trans.y = average.y - t->center.y; cart_trans.z = average.z - t->center.z; t->nodes[t->ncount][0] = cart_trans.x; t->nodes[t->ncount][1] = cart_trans.y; t->nodes[t->ncount][2] = cart_trans.z; center_num = t->ncount; t->ncount++; tex = calc_tex_coords( t->nodes[t->ncount-1], &(t->center) ); xglTexCoord2f(tex.x, tex.y); xglNormal3dv(normal); xglVertex3dv(t->nodes[t->ncount-1]); // first point on perimeter iterator current = perimeter.begin(); cart = geod_to_cart( *current ); cart_trans.x = cart.x - t->center.x; cart_trans.y = cart.y - t->center.y; cart_trans.z = cart.z - t->center.z; t->nodes[t->ncount][0] = cart_trans.x; t->nodes[t->ncount][1] = cart_trans.y; t->nodes[t->ncount][2] = cart_trans.z; t->ncount++; i = 1; tex = calc_tex_coords( t->nodes[i], &(t->center) ); dist = calc_dist(average, cart); if ( dist > max_dist ) { max_dist = dist; } xglTexCoord2f(tex.x, tex.y); xglVertex3dv(t->nodes[i]); ++current; ++i; const_iterator last = perimeter.end(); for ( ; current != last; ++current ) { cart = geod_to_cart( *current ); cart_trans.x = cart.x - t->center.x; cart_trans.y = cart.y - t->center.y; cart_trans.z = cart.z - t->center.z; t->nodes[t->ncount][0] = cart_trans.x; t->nodes[t->ncount][1] = cart_trans.y; t->nodes[t->ncount][2] = cart_trans.z; t->ncount++; fragment.add_face(center_num, i - 1, i); tex = calc_tex_coords( t->nodes[i], &(t->center) ); dist = calc_dist(average, cart); if ( dist > max_dist ) { max_dist = dist; } xglTexCoord2f(tex.x, tex.y); xglVertex3dv(t->nodes[i]); i++; } // last point (first point in perimeter list) current = perimeter.begin(); cart = geod_to_cart( *current ); cart_trans.x = cart.x - t->center.x; cart_trans.y = cart.y - t->center.y; cart_trans.z = cart.z - t->center.z; fragment.add_face(center_num, i - 1, 1); tex = calc_tex_coords( t->nodes[1], &(t->center) ); xglTexCoord2f(tex.x, tex.y); xglVertex3dv(t->nodes[1]); xglEnd(); xglEndList(); fragment.bounding_radius = max_dist; fragment.display_list = display_list; t->fragment_list.push_back(fragment); } // Load a .apt file and register the GL fragments with the // corresponding tile int fgAptGenerate(const string& path, fgTILE *tile) { string token; string apt_id, apt_name; char c; int i = 1; // face list (this indexes into the master tile vertex list) container perimeter; fgPoint3d p, average; int size; // gpc_vertex p_2d, list_2d[MAX_PERIMETER]; // gpc_vertex_list perimeter_2d; fg_gzifstream in( path ); if ( !in ) { // exit immediately assuming an airport file for this tile // doesn't exist. return 0; } apt_id = ""; // read in each line of the file in.eat_comments(); while ( ! in.eof() ) { in.stream() >> token; if ( token == "a" ) { // airport info record (start of airport) if ( apt_id != "" ) { // we have just finished reading and airport record. // process the info gen_base(average, perimeter, tile); } cout << "Reading airport record\n"; in.stream() >> apt_id; apt_name = ""; i = 1; average.lon = average.lat = average.radius = 0.0; perimeter.erase( perimeter.begin(), perimeter.end() ); // skip to end of line. while ( in.get(c) && c != '\n' ) { apt_name += c; } cout << "\tID = " + apt_id + " Name = " + apt_name + "\n"; } else if ( token == "p" ) { // airport area bounding polygon coordinate. These // specify a convex hull that should already have been cut // out of the base terrain. The points are given in // counter clockwise order and are specified in lon/lat // degrees. in.stream() >> p.lon >> p.lat >> p.radius; average.x += tile->nodes[i][0]; average.y += tile->nodes[i][1]; average.z += tile->nodes[i][2]; perimeter.push_back(p); ++i; } else if ( token == "r" ) { // runway record // skip for now while ( in.get(c) && c != '\n' ); } // airports.insert(a); in.eat_comments(); } if ( apt_id != "" ) { // we have just finished reading and airport record. // process the info size = perimeter.size(); average.x = average.x / (double)size + tile->center.x; average.y = average.y / (double)size + tile->center.y; average.z = average.z / (double)size + tile->center.z; gen_base(average, perimeter, tile); } return 1; } // $Log$ // Revision 1.3 1998/09/21 20:55:00 curt // Used the cartesian form of the airport area coordinates to determine the // center. // // Revision 1.2 1998/09/14 12:44:30 curt // Don't recalculate perimeter points since it is not likely that they will match // exactly with the previously calculated points, which will leave an ugly gap // around the airport area. // // Revision 1.1 1998/09/14 02:14:01 curt // Initial revision of genapt.[ch]xx for generating airport scenery. // //