/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Module: FGState.cpp Author: Jon Berndt Date started: 11/17/98 Called by: FGFDMExec and accessed by all models. ------------- Copyright (C) 1999 Jon S. Berndt (jsb@hal-pc.org) ------------- This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. Further information about the GNU General Public License can also be found on the world wide web at http://www.gnu.org. FUNCTIONAL DESCRIPTION -------------------------------------------------------------------------------- See header file. HISTORY -------------------------------------------------------------------------------- 11/17/98 JSB Created %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% INCLUDES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ #ifdef FGFS # include # include #else # if defined(sgi) && !defined(__GNUC__) # include # else # include # endif #endif #ifdef _WIN32 #define snprintf _snprintf #endif #include "FGState.h" static const char *IdSrc = "$Id$"; static const char *IdHdr = ID_STATE; /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% MACROS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ //#define RegisterVariable(ID,DEF) coeffdef[#ID] = ID; paramdef[ID] = DEF #define RegisterVariable(ID,DEF) coeffdef[#ID] = ID; /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% CLASS IMPLEMENTATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // // For every term registered here there must be a corresponding handler in // GetParameter() below that retrieves that parameter. Also, there must be an // entry in the enum eParam definition in FGJSBBase.h. The ID is what must be used // in any config file entry which references that item. FGState::FGState(FGFDMExec* fdex) { FDMExec = fdex; a = 1000.0; sim_time = 0.0; dt = 1.0/120.0; ActiveEngine = -1; Aircraft = FDMExec->GetAircraft(); Translation = FDMExec->GetTranslation(); Rotation = FDMExec->GetRotation(); Position = FDMExec->GetPosition(); FCS = FDMExec->GetFCS(); Output = FDMExec->GetOutput(); Atmosphere = FDMExec->GetAtmosphere(); Aerodynamics = FDMExec->GetAerodynamics(); GroundReactions = FDMExec->GetGroundReactions(); Propulsion = FDMExec->GetPropulsion(); PropertyManager = FDMExec->GetPropertyManager(); InitPropertyMaps(); bind(); Debug(0); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FGState::~FGState() { unbind(); Debug(1); } //*************************************************************************** // // Reset: Assume all angles READ FROM FILE IN DEGREES !! // bool FGState::Reset(string path, string acname, string fname) { string resetDef; string token=""; double U, V, W; double phi, tht, psi; double latitude, longitude, h; double wdir, wmag, wnorth, weast; # ifndef macintosh resetDef = path + "/" + acname + "/" + fname + ".xml"; # else resetDef = path + ";" + acname + ";" + fname + ".xml"; # endif FGConfigFile resetfile(resetDef); if (!resetfile.IsOpen()) return false; resetfile.GetNextConfigLine(); token = resetfile.GetValue(); if (token != string("initialize")) { cerr << "The reset file " << resetDef << " does not appear to be a reset file" << endl; return false; } else { resetfile.GetNextConfigLine(); resetfile >> token; cout << "Resetting using: " << token << endl << endl; } while (token != string("/initialize") && token != string("EOF")) { if (token == "UBODY") resetfile >> U; if (token == "VBODY") resetfile >> V; if (token == "WBODY") resetfile >> W; if (token == "LATITUDE") resetfile >> latitude; if (token == "LONGITUDE") resetfile >> longitude; if (token == "PHI") resetfile >> phi; if (token == "THETA") resetfile >> tht; if (token == "PSI") resetfile >> psi; if (token == "ALTITUDE") resetfile >> h; if (token == "WINDDIR") resetfile >> wdir; if (token == "VWIND") resetfile >> wmag; resetfile >> token; } Position->SetLatitude(latitude*degtorad); Position->SetLongitude(longitude*degtorad); Position->Seth(h); wnorth = wmag*ktstofps*cos(wdir*degtorad); weast = wmag*ktstofps*sin(wdir*degtorad); Initialize(U, V, W, phi*degtorad, tht*degtorad, psi*degtorad, latitude*degtorad, longitude*degtorad, h, wnorth, weast, 0.0); return true; } //*************************************************************************** // // Initialize: Assume all angles GIVEN IN RADIANS !! // void FGState::Initialize(double U, double V, double W, double phi, double tht, double psi, double Latitude, double Longitude, double H, double wnorth, double weast, double wdown) { double alpha, beta; double qbar, Vt; FGColumnVector3 vAeroUVW; Position->SetLatitude(Latitude); Position->SetLongitude(Longitude); Position->Seth(H); Atmosphere->Run(); vLocalEuler << phi << tht << psi; Rotation->SetEuler(vLocalEuler); InitMatrices(phi, tht, psi); vUVW << U << V << W; Translation->SetUVW(vUVW); Atmosphere->SetWindNED(wnorth, weast, wdown); vAeroUVW = vUVW + mTl2b*Atmosphere->GetWindNED(); if (vAeroUVW(eW) != 0.0) alpha = vAeroUVW(eU)*vAeroUVW(eU) > 0.0 ? atan2(vAeroUVW(eW), vAeroUVW(eU)) : 0.0; else alpha = 0.0; if (vAeroUVW(eV) != 0.0) beta = vAeroUVW(eU)*vAeroUVW(eU)+vAeroUVW(eW)*vAeroUVW(eW) > 0.0 ? atan2(vAeroUVW(eV), (fabs(vAeroUVW(eU))/vAeroUVW(eU))*sqrt(vAeroUVW(eU)*vAeroUVW(eU) + vAeroUVW(eW)*vAeroUVW(eW))) : 0.0; else beta = 0.0; Translation->SetAB(alpha, beta); Vt = sqrt(U*U + V*V + W*W); Translation->SetVt(Vt); Translation->SetMach(Vt/Atmosphere->GetSoundSpeed()); qbar = 0.5*(U*U + V*V + W*W)*Atmosphere->GetDensity(); Translation->Setqbar(qbar); vLocalVelNED = mTb2l*vUVW; Position->SetvVel(vLocalVelNED); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void FGState::Initialize(FGInitialCondition *FGIC) { double tht,psi,phi; double U, V, W, h; double latitude, longitude; double wnorth,weast, wdown; latitude = FGIC->GetLatitudeRadIC(); longitude = FGIC->GetLongitudeRadIC(); h = FGIC->GetAltitudeFtIC(); U = FGIC->GetUBodyFpsIC(); V = FGIC->GetVBodyFpsIC(); W = FGIC->GetWBodyFpsIC(); tht = FGIC->GetThetaRadIC(); phi = FGIC->GetPhiRadIC(); psi = FGIC->GetPsiRadIC(); wnorth = FGIC->GetWindNFpsIC(); weast = FGIC->GetWindEFpsIC(); wdown = FGIC->GetWindDFpsIC(); Position->SetSeaLevelRadius( FGIC->GetSeaLevelRadiusFtIC() ); Position->SetRunwayRadius( FGIC->GetSeaLevelRadiusFtIC() + FGIC->GetTerrainAltitudeFtIC() ); // need to fix the wind speed args, here. Initialize(U, V, W, phi, tht, psi, latitude, longitude, h, wnorth, weast, wdown); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void FGState::InitMatrices(double phi, double tht, double psi) { double thtd2, psid2, phid2; double Sthtd2, Spsid2, Sphid2; double Cthtd2, Cpsid2, Cphid2; double Cphid2Cthtd2; double Cphid2Sthtd2; double Sphid2Sthtd2; double Sphid2Cthtd2; thtd2 = tht/2.0; psid2 = psi/2.0; phid2 = phi/2.0; Sthtd2 = sin(thtd2); Spsid2 = sin(psid2); Sphid2 = sin(phid2); Cthtd2 = cos(thtd2); Cpsid2 = cos(psid2); Cphid2 = cos(phid2); Cphid2Cthtd2 = Cphid2*Cthtd2; Cphid2Sthtd2 = Cphid2*Sthtd2; Sphid2Sthtd2 = Sphid2*Sthtd2; Sphid2Cthtd2 = Sphid2*Cthtd2; vQtrn(1) = Cphid2Cthtd2*Cpsid2 + Sphid2Sthtd2*Spsid2; vQtrn(2) = Sphid2Cthtd2*Cpsid2 - Cphid2Sthtd2*Spsid2; vQtrn(3) = Cphid2Sthtd2*Cpsid2 + Sphid2Cthtd2*Spsid2; vQtrn(4) = Cphid2Cthtd2*Spsid2 - Sphid2Sthtd2*Cpsid2; CalcMatrices(); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void FGState::CalcMatrices(void) { double Q0Q0, Q1Q1, Q2Q2, Q3Q3; double Q0Q1, Q0Q2, Q0Q3, Q1Q2; double Q1Q3, Q2Q3; Q0Q0 = vQtrn(1)*vQtrn(1); Q1Q1 = vQtrn(2)*vQtrn(2); Q2Q2 = vQtrn(3)*vQtrn(3); Q3Q3 = vQtrn(4)*vQtrn(4); Q0Q1 = vQtrn(1)*vQtrn(2); Q0Q2 = vQtrn(1)*vQtrn(3); Q0Q3 = vQtrn(1)*vQtrn(4); Q1Q2 = vQtrn(2)*vQtrn(3); Q1Q3 = vQtrn(2)*vQtrn(4); Q2Q3 = vQtrn(3)*vQtrn(4); mTl2b(1,1) = Q0Q0 + Q1Q1 - Q2Q2 - Q3Q3; mTl2b(1,2) = 2*(Q1Q2 + Q0Q3); mTl2b(1,3) = 2*(Q1Q3 - Q0Q2); mTl2b(2,1) = 2*(Q1Q2 - Q0Q3); mTl2b(2,2) = Q0Q0 - Q1Q1 + Q2Q2 - Q3Q3; mTl2b(2,3) = 2*(Q2Q3 + Q0Q1); mTl2b(3,1) = 2*(Q1Q3 + Q0Q2); mTl2b(3,2) = 2*(Q2Q3 - Q0Q1); mTl2b(3,3) = Q0Q0 - Q1Q1 - Q2Q2 + Q3Q3; mTb2l = mTl2b; mTb2l.T(); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void FGState::IntegrateQuat(FGColumnVector3 vPQR, int rate) { vQdot(1) = -0.5*(vQtrn(2)*vPQR(eP) + vQtrn(3)*vPQR(eQ) + vQtrn(4)*vPQR(eR)); vQdot(2) = 0.5*(vQtrn(1)*vPQR(eP) + vQtrn(3)*vPQR(eR) - vQtrn(4)*vPQR(eQ)); vQdot(3) = 0.5*(vQtrn(1)*vPQR(eQ) + vQtrn(4)*vPQR(eP) - vQtrn(2)*vPQR(eR)); vQdot(4) = 0.5*(vQtrn(1)*vPQR(eR) + vQtrn(2)*vPQR(eQ) - vQtrn(3)*vPQR(eP)); vQtrn += 0.5*dt*rate*(vlastQdot + vQdot); vQtrn.Normalize(); vlastQdot = vQdot; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FGColumnVector3& FGState::CalcEuler(void) { if (mTl2b(3,3) == 0.0) mTl2b(3,3) = 0.0000001; if (mTl2b(1,1) == 0.0) mTl2b(1,1) = 0.0000001; vEuler(ePhi) = atan2(mTl2b(2,3), mTl2b(3,3)); vEuler(eTht) = asin(-mTl2b(1,3)); vEuler(ePsi) = atan2(mTl2b(1,2), mTl2b(1,1)); if (vEuler(ePsi) < 0.0) vEuler(ePsi) += 2*M_PI; return vEuler; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FGMatrix33& FGState::GetTs2b(void) { double ca, cb, sa, sb; double alpha = Translation->Getalpha(); double beta = Translation->Getbeta(); ca = cos(alpha); sa = sin(alpha); cb = cos(beta); sb = sin(beta); mTs2b(1,1) = ca*cb; mTs2b(1,2) = -ca*sb; mTs2b(1,3) = -sa; mTs2b(2,1) = sb; mTs2b(2,2) = cb; mTs2b(2,3) = 0.0; mTs2b(3,1) = sa*cb; mTs2b(3,2) = -sa*sb; mTs2b(3,3) = ca; return mTs2b; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FGMatrix33& FGState::GetTb2s(void) { float alpha,beta; float ca, cb, sa, sb; alpha = Translation->Getalpha(); beta = Translation->Getbeta(); ca = cos(alpha); sa = sin(alpha); cb = cos(beta); sb = sin(beta); mTb2s(1,1) = ca*cb; mTb2s(1,2) = sb; mTb2s(1,3) = sa*cb; mTb2s(2,1) = -ca*sb; mTb2s(2,2) = cb; mTb2s(2,3) = -sa*sb; mTb2s(3,1) = -sa; mTb2s(3,2) = 0.0; mTb2s(3,3) = ca; return mTb2s; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void FGState::ReportState(void) { #if !defined(__BORLANDCPP__) char out[80], flap[10], gear[12]; cout << endl << " JSBSim State" << endl; snprintf(out,80," Weight: %7.0f lbs. CG: %5.1f, %5.1f, %5.1f inches\n", FDMExec->GetMassBalance()->GetWeight(), FDMExec->GetMassBalance()->GetXYZcg(1), FDMExec->GetMassBalance()->GetXYZcg(2), FDMExec->GetMassBalance()->GetXYZcg(3)); cout << out; if( FCS->GetDfPos() <= 0.01) snprintf(flap,10,"Up"); else snprintf(flap,10,"%2.0f",FCS->GetDfPos()); if(FCS->GetGearPos() < 0.01) snprintf(gear,12,"Up"); else if(FCS->GetGearPos() > 0.99) snprintf(gear,12,"Down"); else snprintf(gear,12,"In Transit"); snprintf(out,80, " Flaps: %3s Gear: %12s\n",flap,gear); cout << out; snprintf(out,80, " Speed: %4.0f KCAS Mach: %5.2f\n", FDMExec->GetAuxiliary()->GetVcalibratedKTS(), Translation->GetMach() ); cout << out; snprintf(out,80, " Altitude: %7.0f ft. AGL Altitude: %7.0f ft.\n", Position->Geth(), Position->GetDistanceAGL() ); cout << out; snprintf(out,80, " Angle of Attack: %6.2f deg Pitch Angle: %6.2f deg\n", Translation->Getalpha()*radtodeg, Rotation->Gettht()*radtodeg ); cout << out; snprintf(out,80, " Flight Path Angle: %6.2f deg Climb Rate: %5.0f ft/min\n", Position->GetGamma()*radtodeg, Position->Gethdot()*60 ); cout << out; snprintf(out,80, " Normal Load Factor: %4.2f g's Pitch Rate: %5.2f deg/s\n", Aircraft->GetNlf(), Rotation->GetPQR(2)*radtodeg ); cout << out; snprintf(out,80, " Heading: %3.0f deg true Sideslip: %5.2f deg Yaw Rate: %5.2f deg/s\n", Rotation->Getpsi()*radtodeg, Translation->Getbeta()*radtodeg, Rotation->GetPQR(3)*radtodeg ); cout << out; snprintf(out,80, " Bank Angle: %5.2f deg Roll Rate: %5.2f deg/s\n", Rotation->Getphi()*radtodeg, Rotation->GetPQR(1)*radtodeg ); cout << out; snprintf(out,80, " Elevator: %5.2f deg Left Aileron: %5.2f deg Rudder: %5.2f deg\n", FCS->GetDePos(ofRad)*radtodeg, FCS->GetDaLPos(ofRad)*radtodeg, FCS->GetDrPos(ofRad)*radtodeg ); cout << out; snprintf(out,80, " Throttle: %5.2f%c\n", FCS->GetThrottlePos(0)*100,'%' ); cout << out; snprintf(out,80, " Wind Components: %5.2f kts head wind, %5.2f kts cross wind\n", FDMExec->GetAuxiliary()->GetHeadWind()*fpstokts, FDMExec->GetAuxiliary()->GetCrossWind()*fpstokts ); cout << out; snprintf(out,80, " Ground Speed: %4.0f knots , Ground Track: %3.0f deg true\n", Position->GetVground()*fpstokts, Position->GetGroundTrack()*radtodeg ); cout << out; #endif } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void FGState::InitPropertyMaps(void) { ParamNameToProp[ "FG_TIME" ]="sim-time-sec"; ParamNameToProp[ "FG_QBAR" ]="aero/qbar-psf"; ParamNameToProp[ "FG_WINGAREA" ]="metrics/Sw-sqft"; ParamNameToProp[ "FG_WINGSPAN" ]="metrics/bw-ft"; ParamNameToProp[ "FG_CBAR" ]="metrics/cbarw-ft"; ParamNameToProp[ "FG_ALPHA" ]="aero/alpha-rad"; ParamNameToProp[ "FG_ALPHADOT" ]="aero/alphadot-rad_sec"; ParamNameToProp[ "FG_BETA" ]="aero/beta-rad"; ParamNameToProp[ "FG_ABETA" ]="aero/mag-beta-rad"; ParamNameToProp[ "FG_BETADOT" ]="aero/betadot-rad_sec"; ParamNameToProp[ "FG_PHI" ]="attitude/phi-rad"; ParamNameToProp[ "FG_THT" ]="attitude/theta-rad"; ParamNameToProp[ "FG_PSI" ]="attitude/psi-true-rad"; ParamNameToProp[ "FG_PITCHRATE" ]="velocities/q-rad_sec"; ParamNameToProp[ "FG_ROLLRATE" ]="velocities/p-rad_sec"; ParamNameToProp[ "FG_YAWRATE" ]="velocities/r-rad_sec"; ParamNameToProp[ "FG_AEROP" ]="velocities/p-aero-rad_sec"; ParamNameToProp[ "FG_AEROQ" ]="velocities/q-aero-rad_sec"; ParamNameToProp[ "FG_AEROR" ]="velocities/r-aero-rad_sec"; ParamNameToProp[ "FG_CL_SQRD" ]="aero/cl-squared-norm"; ParamNameToProp[ "FG_MACH" ]="velocities/mach-norm"; ParamNameToProp[ "FG_ALTITUDE" ]="position/h-sl-ft"; ParamNameToProp[ "FG_BI2VEL" ]="aero/bi2vel"; ParamNameToProp[ "FG_CI2VEL" ]="aero/ci2vel"; ParamNameToProp[ "FG_ELEVATOR_POS" ]="fcs/elevator-pos-rad"; ParamNameToProp[ "FG_AELEVATOR_POS" ]="fcs/mag-elevator-pos-rad"; ParamNameToProp[ "FG_NELEVATOR_POS" ]="fcs/elevator-pos-norm"; ParamNameToProp[ "FG_AILERON_POS" ]="fcs/left-aileron-pos-rad"; ParamNameToProp[ "FG_AAILERON_POS" ]="fcs/mag-aileron-pos-rad"; ParamNameToProp[ "FG_NAILERON_POS" ]="fcs/left-aileron-pos-norm"; ParamNameToProp[ "FG_LEFT_AILERON_POS" ]="fcs/left-aileron-pos-rad"; ParamNameToProp[ "FG_ALEFT_AILERON_POS" ]="fcs/mag-left-aileron-pos-rad"; ParamNameToProp[ "FG_NLEFT_AILERON_POS" ]="fcs/left-aileron-pos-norm"; ParamNameToProp[ "FG_RIGHT_AILERON_POS" ]="fcs/right-aileron-pos-rad"; ParamNameToProp[ "FG_ARIGHT_AILERON_POS" ]="fcs/mag-aileron-pos-rad"; ParamNameToProp[ "FG_NRIGHT_AILERON_POS" ]="fcs/right-aileron-pos-norm"; ParamNameToProp[ "FG_RUDDER_POS" ]="fcs/rudder-pos-rad"; ParamNameToProp[ "FG_ARUDDER_POS" ]="fcs/mag-rudder-pos-rad"; ParamNameToProp[ "FG_NRUDDER_POS" ]="fcs/rudder-pos-norm"; ParamNameToProp[ "FG_SPDBRAKE_POS" ]="fcs/speedbrake-pos-rad"; ParamNameToProp[ "FG_NSPDBRAKE_POS" ]="fcs/speedbrake-pos-norm"; ParamNameToProp[ "FG_SPOILERS_POS" ]="fcs/spoiler-pos-rad"; ParamNameToProp[ "FG_NSPOILERS_POS" ]="fcs/spoiler-pos-norm"; ParamNameToProp[ "FG_FLAPS_POS" ]="fcs/flap-pos-deg"; ParamNameToProp[ "FG_NFLAPS_POS" ]="fcs/flap-pos-norm"; ParamNameToProp[ "FG_ELEVATOR_CMD" ]="fcs/elevator-cmd-norm"; ParamNameToProp[ "FG_AILERON_CMD" ]="fcs/aileron-cmd-norm"; ParamNameToProp[ "FG_RUDDER_CMD" ]="fcs/rudder-cmd-norm"; ParamNameToProp[ "FG_SPDBRAKE_CMD" ]="fcs/speedbrake-cmd-norm"; ParamNameToProp[ "FG_SPOILERS_CMD" ]="fcs/spoiler-cmd-norm"; ParamNameToProp[ "FG_FLAPS_CMD" ]="fcs/flap-cmd-norm"; ParamNameToProp[ "FG_THROTTLE_CMD" ]="fcs/throttle-cmd-norm"; ParamNameToProp[ "FG_THROTTLE_POS" ]="fcs/throttle-pos-norm"; ParamNameToProp[ "FG_MIXTURE_CMD" ]="fcs/mixture-cmd-norm"; ParamNameToProp[ "FG_MIXTURE_POS" ]="fcs/mixture-pos-norm"; ParamNameToProp[ "FG_MAGNETO_CMD" ]="zero"; ParamNameToProp[ "FG_STARTER_CMD" ]="zero"; ParamNameToProp[ "FG_ACTIVE_ENGINE" ]="zero"; ParamNameToProp[ "FG_HOVERB" ]="aero/h_b-mac-ft"; ParamNameToProp[ "FG_PITCH_TRIM_CMD" ]="fcs/pitch-trim-cmd-norm"; ParamNameToProp[ "FG_YAW_TRIM_CMD" ]="fcs/yaw-trim-cmd-norm"; ParamNameToProp[ "FG_ROLL_TRIM_CMD" ]="fcs/roll-trim-cmd-norm"; ParamNameToProp[ "FG_LEFT_BRAKE_CMD" ]="zero"; ParamNameToProp[ "FG_CENTER_BRAKE_CMD" ]="zero"; ParamNameToProp[ "FG_RIGHT_BRAKE_CMD" ]="zero"; ParamNameToProp[ "FG_SET_LOGGING" ]="zero"; ParamNameToProp[ "FG_ALPHAH" ]="aero/alpha-rad"; ParamNameToProp[ "FG_ALPHAW" ]="aero/alpha-wing-rad"; ParamNameToProp[ "FG_LBARH" ]="metrics/lh-norm"; ParamNameToProp[ "FG_LBARV" ]="metrics/lv-norm"; ParamNameToProp[ "FG_HTAILAREA" ]="metrics/Sh-sqft"; ParamNameToProp[ "FG_VTAILAREA" ]="metrics/Sv-sqft"; ParamNameToProp[ "FG_VBARH" ]="metrics/vbarh-norm"; ParamNameToProp[ "FG_VBARV" ]="metrics/vbarv-norm"; ParamNameToProp[ "FG_GEAR_CMD" ]="gear/gear-cmd-norm"; ParamNameToProp[ "FG_GEAR_POS" ]="gear/gear-pos-norm"; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void FGState::bind(void) { PropertyManager->Tie("sim-time-sec",this, &FGState::Getsim_time); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void FGState::unbind(void) { PropertyManager->Untie("sim-time-sec"); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // The bitmasked value choices are as follows: // unset: In this case (the default) JSBSim would only print // out the normally expected messages, essentially echoing // the config files as they are read. If the environment // variable is not set, debug_lvl is set to 1 internally // 0: This requests JSBSim not to output any messages // whatsoever. // 1: This value explicity requests the normal JSBSim // startup messages // 2: This value asks for a message to be printed out when // a class is instantiated // 4: When this value is set, a message is displayed when a // FGModel object executes its Run() method // 8: When this value is set, various runtime state variables // are printed out periodically // 16: When set various parameters are sanity checked and // a message is printed out when they go out of bounds void FGState::Debug(int from) { if (debug_lvl <= 0) return; if (debug_lvl & 1) { // Standard console startup message output if (from == 0) { // Constructor } } if (debug_lvl & 2 ) { // Instantiation/Destruction notification if (from == 0) cout << "Instantiated: FGState" << endl; if (from == 1) cout << "Destroyed: FGState" << endl; } if (debug_lvl & 4 ) { // Run() method entry print for FGModel-derived objects } if (debug_lvl & 8 ) { // Runtime state variables } if (debug_lvl & 16) { // Sanity checking } if (debug_lvl & 64) { if (from == 0) { // Constructor cout << IdSrc << endl; cout << IdHdr << endl; } } }