/* * Copyright (C) 2019 James Turner * * This file is part of the program FlightGear. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "TestPilot.hxx" #include #include #include #include #include
#include "TestDataLogger.hxx" namespace FGTestApi { TestPilot::TestPilot(SGPropertyNode_ptr props) : _propRoot(props) { if (!_propRoot) { // use default properties _propRoot = globals->get_props(); } _latProp = _propRoot->getNode("position/latitude-deg", true); _lonProp = _propRoot->getNode("position/longitude-deg", true); _altitudeProp = _propRoot->getNode("position/altitude-ft", true); _headingProp = _propRoot->getNode("orientation/heading-deg", true); _speedKnotsProp = _propRoot->getNode("velocities/speed-knots", true); _verticalFPMProp = _propRoot->getNode("velocities/vertical-fpm", true); SGPropertyNode_ptr _latProp; SGPropertyNode_ptr _lonProp; SGPropertyNode_ptr _altitudeProp; SGPropertyNode_ptr _headingProp; SGPropertyNode_ptr _speedKnotsProp; SGPropertyNode_ptr _verticalFPMProp; globals->add_subsystem("flight", this, SGSubsystemMgr::FDM); } TestPilot::~TestPilot() { } void TestPilot::resetAtPosition(const SGGeod& pos) { _turnActive = false; setPosition(pos); } void TestPilot::init() { _vspeedFPM = 1200; } void TestPilot::update(double dt) { updateValues(dt); } void TestPilot::setSpeedKts(double knots) { _speedKnots = knots; } void TestPilot::setVerticalFPM(double fpm) { _vspeedFPM = fpm; } void TestPilot::setCourseTrue(double deg) { _trueCourseDeg = deg; } void TestPilot::turnToCourse(double deg) { _turnActive = true; _targetCourseDeg = deg; } void TestPilot::flyHeading(double hdg) { _lateralMode = LateralMode::Heading; _turnActive = true; _targetCourseDeg = hdg; } void TestPilot::flyGPSCourse(GPS *gps) { _gps = gps; _gpsNode = globals->get_props()->getNode("instrumentation/gps"); _gpsLegCourse = _gpsNode->getNode("wp/leg-true-course-deg", true); _courseErrorNm = _gpsNode->getNode("wp/wp[1]/course-error-nm", true); _lateralMode = LateralMode::GPSCourse; _turnActive = false; } void TestPilot::flyGPSCourseOffset(GPS *gps, double offsetNm) { _gps = gps; _gpsNode = globals->get_props()->getNode("instrumentation/gps"); _gpsLegCourse = _gpsNode->getNode("wp/leg-true-course-deg", true); _courseErrorNm = _gpsNode->getNode("wp/wp[1]/course-error-nm", true); _lateralMode = LateralMode::GPSOffset; _courseOffsetNm = offsetNm; _turnActive = false; } void TestPilot::flyDirectTo(const SGGeod& target) { _lateralMode = LateralMode::Direct; _targetPos = target; } void TestPilot::updateValues(double dt) { auto dl = DataLogger::instance(); if (_gps && (_lateralMode == LateralMode::GPSCourse)) { _targetCourseDeg = _gpsLegCourse->getDoubleValue(); // set how aggressively we try to correct our course double courseCorrectionFactor = 64.0; double crossTrack = _courseErrorNm->getDoubleValue(); dl->recordSamplePoint("TP-error-nm", crossTrack); SG_CLAMP_RANGE(crossTrack, -2.0, 2.0); // clamp to 2nm deviation double correction = courseCorrectionFactor * crossTrack; const double maxCorrectionAngle = 45; dl->recordSamplePoint("TP-base-correction-deg", correction); // within 1nm of the desired course, start to bias // based on heading error. This is to reduce overshooting // while still keeping the responsiveness high if (fabs(crossTrack) < 1.0) { // compensate for heading double headingError = _targetCourseDeg - _trueCourseDeg; SG_NORMALIZE_RANGE(headingError, -180.0, 180.0); if (fabs(headingError) > 90.0) { // we're pointing the wrong way, don't compensate // otherwise we get into knots trying to make the // turn back the right way } else { const double p = 1.0 - fabs(crossTrack); const double headingErrorFactor = 0.6; correction += p * headingError * headingErrorFactor; } } dl->recordSamplePoint("TP-correction-deg", correction); SG_CLAMP_RANGE(correction, -maxCorrectionAngle, maxCorrectionAngle); _targetCourseDeg += correction; dl->recordSamplePoint("TP-target-deg", _targetCourseDeg); SG_NORMALIZE_RANGE(_targetCourseDeg, 0.0, 360.0); if (!_turnActive &&(fabs(_trueCourseDeg - _targetCourseDeg) > 0.5)) { _turnActive = true; } } if (_gps && (_lateralMode == LateralMode::GPSOffset)) { _targetCourseDeg = _gpsLegCourse->getDoubleValue(); double crossTrack = _courseErrorNm->getDoubleValue(); double offsetError = crossTrack - _courseOffsetNm; const double offsetCorrectionFactor = 25.0; const double correction = offsetError * offsetCorrectionFactor; _targetCourseDeg += correction; SG_NORMALIZE_RANGE(_targetCourseDeg, 0.0, 360.0); if (!_turnActive &&(fabs(_trueCourseDeg - _targetCourseDeg) > 0.5)) { _turnActive = true; } } if (_lateralMode == LateralMode::Direct) { _targetCourseDeg = SGGeodesy::courseDeg(globals->get_aircraft_position(), _targetPos); SG_NORMALIZE_RANGE(_targetCourseDeg, 0.0, 360.0); if (!_turnActive && (fabs(_trueCourseDeg - _targetCourseDeg) > 0.5)) { _turnActive = true; } } if (_turnActive) { if (fabs(_targetCourseDeg - _trueCourseDeg) < 0.1) { _trueCourseDeg = _targetCourseDeg; _turnActive = false; } else { // standard 2-minute turn, 180-deg min, thus 3-degrees per second double turnDeg = 5.0 * dt; double errorDeg = _targetCourseDeg - _trueCourseDeg; SG_NORMALIZE_RANGE(errorDeg, -180.0, 180.0); // clamp turn to error value turnDeg = std::min(turnDeg, fabs(errorDeg)); // and now ensure we follow the correct sign turnDeg = copysign(turnDeg, errorDeg); // simple integral _trueCourseDeg += turnDeg; SG_NORMALIZE_RANGE(_trueCourseDeg, 0.0, 360.0); } } SGGeod currentPos = globals->get_aircraft_position(); double d = _speedKnots * SG_KT_TO_MPS * dt; SGGeod newPos = SGGeodesy::direct(currentPos, _trueCourseDeg, d); if (_altActive) { if (fabs(_targetAltitudeFt - currentPos.getElevationFt()) < 1) { _altActive = false; newPos.setElevationFt(_targetAltitudeFt); } else { double errorFt = _targetAltitudeFt - currentPos.getElevationFt(); double vspeed = std::min(fabs(errorFt),_vspeedFPM * dt / 60.0); double dv = copysign(vspeed, errorFt); newPos.setElevationFt(currentPos.getElevationFt() + dv); } } setPosition(newPos); } void TestPilot::setPosition(const SGGeod& pos) { _latProp->setDoubleValue(pos.getLatitudeDeg()); _lonProp->setDoubleValue(pos.getLongitudeDeg()); _altitudeProp->setDoubleValue(pos.getElevationFt()); _headingProp->setDoubleValue(_trueCourseDeg); _speedKnotsProp->setDoubleValue(_speedKnots); _verticalFPMProp->setDoubleValue(_vspeedFPM); } void TestPilot::setTargetAltitudeFtMSL(double altFt) { _targetAltitudeFt = altFt; _altActive = true; } bool TestPilot::isOnHeading(double heading) const { const double hdgDelta = (_trueCourseDeg - heading); return fabs(hdgDelta) < 0.5; } } // of namespace