// groundcache.cxx -- carries a small subset of the scenegraph near the vehicle // // Written by Mathias Froehlich, started Nov 2004. // // Copyright (C) 2004 Mathias Froehlich - Mathias.Froehlich@web.de // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. // // $Id$ #ifdef HAVE_CONFIG_H # include "config.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include
#include #include #include #include "flight.hxx" #include "groundcache.hxx" /// Ok, variant that uses a infinite line istead of the ray. /// also not that this only works if the ray direction is normalized. static inline bool intersectsInf(const SGRayd& ray, const SGSphered& sphere) { SGVec3d r = sphere.getCenter() - ray.getOrigin(); double projectedDistance = dot(r, ray.getDirection()); double dist = dot(r, r) - projectedDistance * projectedDistance; return dist < sphere.getRadius2(); } template class SGExtendedTriangleFunctor : public osg::TriangleFunctor { public: // Ok, to be complete we should also implement the indexed variants // For now this one appears to be enough ... void drawArrays(GLenum mode, GLint first, GLsizei count) { if (_vertexArrayPtr==0 || count==0) return; const osg::Vec3* vlast; const osg::Vec3* vptr; switch(mode) { case(GL_LINES): vlast = &_vertexArrayPtr[first+count]; for(vptr=&_vertexArrayPtr[first];vptroperator()(*(vptr),*(vptr+1),_treatVertexDataAsTemporary); break; case(GL_LINE_STRIP): vlast = &_vertexArrayPtr[first+count-1]; for(vptr=&_vertexArrayPtr[first];vptroperator()(*(vptr),*(vptr+1),_treatVertexDataAsTemporary); break; case(GL_LINE_LOOP): vlast = &_vertexArrayPtr[first+count-1]; for(vptr=&_vertexArrayPtr[first];vptroperator()(*(vptr),*(vptr+1),_treatVertexDataAsTemporary); this->operator()(_vertexArrayPtr[first+count-1], _vertexArrayPtr[first],_treatVertexDataAsTemporary); break; default: osg::TriangleFunctor::drawArrays(mode, first, count); break; } } protected: using osg::TriangleFunctor::_vertexArrayPtr; using osg::TriangleFunctor::_treatVertexDataAsTemporary; }; class GroundCacheFillVisitor : public osg::NodeVisitor { public: /// class to just redirect triangles to the GroundCacheFillVisitor class GroundCacheFill { public: void setGroundCacheFillVisitor(GroundCacheFillVisitor* gcfv) { mGroundCacheFillVisitor = gcfv; } void operator () (const osg::Vec3& v1, const osg::Vec3& v2, const osg::Vec3& v3, bool) { mGroundCacheFillVisitor->addTriangle(v1, v2, v3); } void operator () (const osg::Vec3& v1, const osg::Vec3& v2, bool) { mGroundCacheFillVisitor->addLine(v1, v2); } private: GroundCacheFillVisitor* mGroundCacheFillVisitor; }; GroundCacheFillVisitor(FGGroundCache* groundCache, const SGVec3d& down, const SGVec3d& cacheReference, double cacheRadius, double wireCacheRadius) : osg::NodeVisitor(osg::NodeVisitor::TRAVERSE_ACTIVE_CHILDREN), mGroundCache(groundCache) { setTraversalMask(SG_NODEMASK_TERRAIN_BIT); mDown = down; mLocalDown = down; sphIsec = true; mBackfaceCulling = false; mCacheReference = cacheReference; mLocalCacheReference = cacheReference; mCacheRadius = cacheRadius; mWireCacheRadius = wireCacheRadius; mTriangleFunctor.setGroundCacheFillVisitor(this); mGroundProperty.wire_id = -1; mGroundProperty.vel = SGVec3d(0, 0, 0); mGroundProperty.rot = SGVec3d(0, 0, 0); mGroundProperty.pivot = SGVec3d(0, 0, 0); } void updateCullMode(osg::StateSet* stateSet) { if (!stateSet) return; osg::StateAttribute* stateAttribute; stateAttribute = stateSet->getAttribute(osg::StateAttribute::CULLFACE); if (!stateAttribute) return; osg::CullFace* cullFace = static_cast(stateAttribute); mBackfaceCulling = cullFace->getMode() == osg::CullFace::BACK; } bool enterBoundingSphere(const osg::BoundingSphere& bs) { if (!bs.valid()) return false; SGVec3d cntr(osg::Vec3d(bs.center())*mLocalToGlobal); double rc = bs.radius() + mCacheRadius; // Ok, this node might intersect the cache. Visit it in depth. double centerDist2 = distSqr(mCacheReference, cntr); if (centerDist2 < rc*rc) { sphIsec = true; } else { // Check if the down direction touches the bounding sphere of the node // if so, do at least croase agl computations. // Ther other thing is that we must check if we are in range of // cats or wires double rw = bs.radius() + mWireCacheRadius; if (rw*rw < centerDist2 && !intersectsInf(SGRayd(mCacheReference, mDown), SGSphered(cntr, bs.radius()))) return false; sphIsec = false; } return true; } bool enterNode(osg::Node& node) { if (!enterBoundingSphere(node.getBound())) return false; updateCullMode(node.getStateSet()); FGGroundCache::GroundProperty& gp = mGroundProperty; // get some material information for use in the gear model gp.material = globals->get_matlib()->findMaterial(&node); if (gp.material) { gp.type = gp.material->get_solid() ? FGInterface::Solid : FGInterface::Water; return true; } gp.type = FGInterface::Unknown; osg::Referenced* base = node.getUserData(); if (!base) return true; FGAICarrierHardware *ud = dynamic_cast(base); if (!ud) return true; switch (ud->type) { case FGAICarrierHardware::Wire: gp.type = FGInterface::Wire; gp.wire_id = ud->id; break; case FGAICarrierHardware::Catapult: gp.type = FGInterface::Catapult; break; default: gp.type = FGInterface::Solid; break; } // Copy the velocity from the carrier class. ud->carrier->getVelocityWrtEarth(gp.vel, gp.rot, gp.pivot); return true; } void fillWith(osg::Drawable* drawable) { bool oldSphIsec = sphIsec; if (!enterBoundingSphere(drawable->getBound())) return; bool oldBackfaceCulling = mBackfaceCulling; updateCullMode(drawable->getStateSet()); drawable->accept(mTriangleFunctor); mBackfaceCulling = oldBackfaceCulling; sphIsec = oldSphIsec; } virtual void apply(osg::Geode& geode) { bool oldBackfaceCulling = mBackfaceCulling; bool oldSphIsec = sphIsec; FGGroundCache::GroundProperty oldGp = mGroundProperty; if (!enterNode(geode)) return; for(unsigned i = 0; i < geode.getNumDrawables(); ++i) fillWith(geode.getDrawable(i)); sphIsec = oldSphIsec; mGroundProperty = oldGp; mBackfaceCulling = oldBackfaceCulling; } virtual void apply(osg::Group& group) { bool oldBackfaceCulling = mBackfaceCulling; bool oldSphIsec = sphIsec; FGGroundCache::GroundProperty oldGp = mGroundProperty; if (!enterNode(group)) return; traverse(group); sphIsec = oldSphIsec; mBackfaceCulling = oldBackfaceCulling; mGroundProperty = oldGp; } virtual void apply(osg::Transform& transform) { if (!enterNode(transform)) return; bool oldBackfaceCulling = mBackfaceCulling; bool oldSphIsec = sphIsec; FGGroundCache::GroundProperty oldGp = mGroundProperty; /// transform the caches center to local coords osg::Matrix oldLocalToGlobal = mLocalToGlobal; osg::Matrix oldGlobalToLocal = mGlobalToLocal; transform.computeLocalToWorldMatrix(mLocalToGlobal, this); transform.computeWorldToLocalMatrix(mGlobalToLocal, this); SGVec3d oldLocalCacheReference = mLocalCacheReference; mLocalCacheReference.osg() = mCacheReference.osg()*mGlobalToLocal; SGVec3d oldLocalDown = mLocalDown; mLocalDown.osg() = osg::Matrixd::transform3x3(mDown.osg(), mGlobalToLocal); // walk the children traverse(transform); // Restore that one mLocalDown = oldLocalDown; mLocalCacheReference = oldLocalCacheReference; mLocalToGlobal = oldLocalToGlobal; mGlobalToLocal = oldGlobalToLocal; sphIsec = oldSphIsec; mBackfaceCulling = oldBackfaceCulling; mGroundProperty = oldGp; } void addTriangle(const osg::Vec3& v1, const osg::Vec3& v2, const osg::Vec3& v3) { SGVec3d v[3] = { SGVec3d(v1), SGVec3d(v2), SGVec3d(v3) }; // a bounding sphere in the node local system SGVec3d boundCenter = (1.0/3)*(v[0] + v[1] + v[2]); double boundRadius = std::max(distSqr(v[0], boundCenter), distSqr(v[1], boundCenter)); boundRadius = std::max(boundRadius, distSqr(v[2], boundCenter)); boundRadius = sqrt(boundRadius); SGRayd ray(mLocalCacheReference, mLocalDown); // if we are not in the downward cylinder bail out if (!intersectsInf(ray, SGSphered(boundCenter, boundRadius + mCacheRadius))) return; SGTriangled triangle(v); // The normal and plane in the node local coordinate system SGVec3d n = cross(triangle.getEdge(0), triangle.getEdge(1)); if (0 < dot(mLocalDown, n)) { if (mBackfaceCulling) { // Surface points downwards, ignore for altitude computations. return; } else { triangle.flip(); } } // Only check if the triangle is in the cache sphere if the plane // containing the triangle is near enough if (sphIsec) { double d = dot(n, v[0] - mLocalCacheReference); if (d*d < mCacheRadius*dot(n, n)) { // Check if the sphere around the vehicle intersects the sphere // around that triangle. If so, put that triangle into the cache. double r2 = boundRadius + mCacheRadius; if (distSqr(boundCenter, mLocalCacheReference) < r2*r2) { FGGroundCache::Triangle t; t.triangle.setBaseVertex(SGVec3d(v[0].osg()*mLocalToGlobal)); t.triangle.setEdge(0, SGVec3d(osg::Matrixd::transform3x3(triangle.getEdge(0).osg(), mLocalToGlobal))); t.triangle.setEdge(1, SGVec3d(osg::Matrixd::transform3x3(triangle.getEdge(1).osg(), mLocalToGlobal))); t.sphere.setCenter(SGVec3d(boundCenter.osg()*mLocalToGlobal)); t.sphere.setRadius(boundRadius); t.velocity = mGroundProperty.vel; t.rotation = mGroundProperty.rot; t.rotation_pivot = mGroundProperty.pivot; t.type = mGroundProperty.type; t.material = mGroundProperty.material; mGroundCache->triangles.push_back(t); } } } // In case the cache is empty, we still provide agl computations. // But then we use the old way of having a fixed elevation value for // the whole lifetime of this cache. SGVec3d isectpoint; if (intersects(isectpoint, triangle, ray, 1e-4)) { mGroundCache->found_ground = true; isectpoint.osg() = isectpoint.osg()*mLocalToGlobal; double this_radius = length(isectpoint); if (mGroundCache->ground_radius < this_radius) { mGroundCache->ground_radius = this_radius; mGroundCache->_type = mGroundProperty.type; mGroundCache->_material = mGroundProperty.material; } } } void addLine(const osg::Vec3& v1, const osg::Vec3& v2) { SGVec3d gv1(osg::Vec3d(v1)*mLocalToGlobal); SGVec3d gv2(osg::Vec3d(v2)*mLocalToGlobal); SGVec3d boundCenter = 0.5*(gv1 + gv2); double boundRadius = length(gv1 - boundCenter); if (distSqr(boundCenter, mCacheReference) < (boundRadius + mWireCacheRadius)*(boundRadius + mWireCacheRadius) ) { if (mGroundProperty.type == FGInterface::Wire) { FGGroundCache::Wire wire; wire.ends[0] = gv1; wire.ends[1] = gv2; wire.velocity = mGroundProperty.vel; wire.rotation = mGroundProperty.rot; wire.rotation_pivot = mGroundProperty.pivot; wire.wire_id = mGroundProperty.wire_id; mGroundCache->wires.push_back(wire); } if (mGroundProperty.type == FGInterface::Catapult) { FGGroundCache::Catapult cat; // Trick to get the ends in the right order. // Use the x axis in the original coordinate system. Choose the // most negative x-axis as the one pointing forward if (v1[0] > v2[0]) { cat.start = gv1; cat.end = gv2; } else { cat.start = gv2; cat.end = gv1; } cat.velocity = mGroundProperty.vel; cat.rotation = mGroundProperty.rot; cat.rotation_pivot = mGroundProperty.pivot; mGroundCache->catapults.push_back(cat); } } } SGExtendedTriangleFunctor mTriangleFunctor; FGGroundCache* mGroundCache; SGVec3d mCacheReference; double mCacheRadius; double mWireCacheRadius; osg::Matrix mLocalToGlobal; osg::Matrix mGlobalToLocal; SGVec3d mDown; SGVec3d mLocalDown; SGVec3d mLocalCacheReference; bool sphIsec; bool mBackfaceCulling; FGGroundCache::GroundProperty mGroundProperty; }; FGGroundCache::FGGroundCache() { ground_radius = 0.0; cache_ref_time = 0.0; wire_id = 0; reference_wgs84_point = SGVec3d(0, 0, 0); reference_vehicle_radius = 0.0; found_ground = false; } FGGroundCache::~FGGroundCache() { } inline void FGGroundCache::velocityTransformTriangle(double dt, SGTriangled& dst, SGSphered& sdst, const FGGroundCache::Triangle& src) { dst = src.triangle; sdst = src.sphere; if (dt*dt*dot(src.velocity, src.velocity) < SGLimitsd::epsilon()) return; SGVec3d baseVert = dst.getBaseVertex(); SGVec3d pivotoff = baseVert - src.rotation_pivot; baseVert += dt*(src.velocity + cross(src.rotation, pivotoff)); dst.setBaseVertex(baseVert); dst.setEdge(0, dst.getEdge(0) + dt*cross(src.rotation, dst.getEdge(0))); dst.setEdge(1, dst.getEdge(1) + dt*cross(src.rotation, dst.getEdge(1))); } bool FGGroundCache::prepare_ground_cache(double ref_time, const SGVec3d& pt, double rad) { // Empty cache. ground_radius = 0.0; found_ground = false; triangles.resize(0); catapults.resize(0); wires.resize(0); // Store the parameters we used to build up that cache. reference_wgs84_point = pt; reference_vehicle_radius = rad; // Store the time reference used to compute movements of moving triangles. cache_ref_time = ref_time; // Get a normalized down vector valid for the whole cache SGQuatd hlToEc = SGQuatd::fromLonLat(SGGeod::fromCart(pt)); down = hlToEc.rotate(SGVec3d(0, 0, 1)); // Prepare sphere around the aircraft. double cacheRadius = rad; // Prepare bigger sphere around the aircraft. // This one is required for reliably finding wires we have caught but // have already left the hopefully smaller sphere for the ground reactions. const double max_wire_dist = 300.0; double wireCacheRadius = max_wire_dist < rad ? rad : max_wire_dist; // Walk the scene graph and extract solid ground triangles and carrier data. GroundCacheFillVisitor gcfv(this, down, pt, cacheRadius, wireCacheRadius); globals->get_scenery()->get_scene_graph()->accept(gcfv); // some stats SG_LOG(SG_FLIGHT,SG_DEBUG, "prepare_ground_cache(): ac radius = " << rad << ", # triangles = " << triangles.size() << ", # wires = " << wires.size() << ", # catapults = " << catapults.size() << ", ground_radius = " << ground_radius ); // If the ground radius is still below 5e6 meters, then we do not yet have // any scenery. found_ground = found_ground && 5e6 < ground_radius; if (!found_ground) SG_LOG(SG_FLIGHT, SG_WARN, "prepare_ground_cache(): trying to build cache " "without any scenery below the aircraft" ); return found_ground; } bool FGGroundCache::is_valid(double& ref_time, SGVec3d& pt, double& rad) { pt = reference_wgs84_point; rad = reference_vehicle_radius; ref_time = cache_ref_time; return found_ground; } double FGGroundCache::get_cat(double t, const SGVec3d& dpt, SGVec3d end[2], SGVec3d vel[2]) { // start with a distance of 1e10 meters... double dist = 1e10; // Time difference to the reference time. t -= cache_ref_time; size_t sz = catapults.size(); for (size_t i = 0; i < sz; ++i) { SGVec3d pivotoff, rvel[2]; pivotoff = catapults[i].start - catapults[i].rotation_pivot; rvel[0] = catapults[i].velocity + cross(catapults[i].rotation, pivotoff); pivotoff = catapults[i].end - catapults[i].rotation_pivot; rvel[1] = catapults[i].velocity + cross(catapults[i].rotation, pivotoff); SGVec3d thisEnd[2]; thisEnd[0] = catapults[i].start + t*rvel[0]; thisEnd[1] = catapults[i].end + t*rvel[1]; double this_dist = distSqr(SGLineSegmentd(thisEnd[0], thisEnd[1]), dpt); if (this_dist < dist) { SG_LOG(SG_FLIGHT,SG_INFO, "Found catapult " << this_dist << " meters away"); dist = this_dist; end[0] = thisEnd[0]; end[1] = thisEnd[1]; vel[0] = rvel[0]; vel[1] = rvel[1]; } } // At the end take the root, we only computed squared distances ... return sqrt(dist); } bool FGGroundCache::get_agl(double t, const SGVec3d& dpt, double max_altoff, SGVec3d& contact, SGVec3d& normal, SGVec3d& vel, int *type, const SGMaterial** material, double *agl) { bool ret = false; *type = FGInterface::Unknown; // *agl = 0.0; if (material) *material = 0; vel = SGVec3d(0, 0, 0); contact = SGVec3d(0, 0, 0); normal = SGVec3d(0, 0, 0); // Time difference to th reference time. t -= cache_ref_time; // The double valued point we start to search for intersection. SGVec3d pt = dpt; // shift the start of our ray by maxaltoff upwards SGRayd ray(pt - max_altoff*down, down); // Initialize to something sensible double current_radius = 0.0; size_t sz = triangles.size(); for (size_t i = 0; i < sz; ++i) { SGSphered sphere; SGTriangled triangle; velocityTransformTriangle(t, triangle, sphere, triangles[i]); if (!intersectsInf(ray, sphere)) continue; // Check for intersection. SGVec3d isecpoint; if (intersects(isecpoint, triangle, ray, 1e-4)) { // Compute the vector from pt to the intersection point ... SGVec3d off = isecpoint - pt; // ... and check if it is too high or not // compute the radius, good enough approximation to take the geocentric radius double radius = dot(isecpoint, isecpoint); if (current_radius < radius) { current_radius = radius; ret = true; // Save the new potential intersection point. contact = isecpoint; // The first three values in the vector are the plane normal. normal = triangle.getNormal(); // The velocity wrt earth. SGVec3d pivotoff = pt - triangles[i].rotation_pivot; vel = triangles[i].velocity + cross(triangles[i].rotation, pivotoff); // Save the ground type. *type = triangles[i].type; *agl = dot(down, contact - dpt); if (material) *material = triangles[i].material; } } } if (ret) return true; // Whenever we did not have a ground triangle for the requested point, // take the ground level we found during the current cache build. // This is as good as what we had before for agl. double r = length(dpt); contact = dpt; contact *= ground_radius/r; normal = -down; vel = SGVec3d(0, 0, 0); // The altitude is the distance of the requested point from the // contact point. *agl = dot(down, contact - dpt); *type = _type; if (material) *material = _material; return ret; } bool FGGroundCache::caught_wire(double t, const SGVec3d pt[4]) { size_t sz = wires.size(); if (sz == 0) return false; // Time difference to the reference time. t -= cache_ref_time; // Build the two triangles spanning the area where the hook has moved // during the past step. SGTriangled triangle[2]; triangle[0].set(pt[0], pt[1], pt[2]); triangle[1].set(pt[0], pt[2], pt[3]); // Intersect the wire lines with each of these triangles. // You have caught a wire if they intersect. for (size_t i = 0; i < sz; ++i) { SGVec3d le[2]; for (int k = 0; k < 2; ++k) { le[k] = wires[i].ends[k]; SGVec3d pivotoff = le[k] - wires[i].rotation_pivot; SGVec3d vel = wires[i].velocity + cross(wires[i].rotation, pivotoff); le[k] += t*vel; } SGLineSegmentd lineSegment(le[0], le[1]); for (int k=0; k<2; ++k) { if (intersects(triangle[k], lineSegment)) { SG_LOG(SG_FLIGHT,SG_INFO, "Caught wire"); // Store the wire id. wire_id = wires[i].wire_id; return true; } } } return false; } bool FGGroundCache::get_wire_ends(double t, SGVec3d end[2], SGVec3d vel[2]) { // Fast return if we do not have an active wire. if (wire_id < 0) return false; // Time difference to the reference time. t -= cache_ref_time; // Search for the wire with the matching wire id. size_t sz = wires.size(); for (size_t i = 0; i < sz; ++i) { if (wires[i].wire_id == wire_id) { for (size_t k = 0; k < 2; ++k) { SGVec3d pivotoff = wires[i].ends[k] - wires[i].rotation_pivot; vel[k] = wires[i].velocity + cross(wires[i].rotation, pivotoff); end[k] = wires[i].ends[k] + t*vel[k]; } return true; } } return false; } void FGGroundCache::release_wire(void) { wire_id = -1; }