// // light.cxx -- lighting routines // // Written by Curtis Olson, started April 1998. // // Copyright (C) 1998 Curtis L. Olson - http://www.flightgear.org/~curt // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. // // $Id$ #ifdef HAVE_CONFIG_H # include #endif #include #include #include #include #include #include #include #include #include #include #include
#include
#include
#include
#include
#include "light.hxx" #include "sunsolver.hxx" /** * Map i.e. project a vector onto a plane. * @param normal (in) normal vector for the plane * @param v0 (in) a point on the plane * @param vec (in) the vector to map onto the plane */ static SGVec3f map_vec_onto_cur_surface_plane(const SGVec3f& normal, const SGVec3f& v0, const SGVec3f& vec) { // calculate a vector "u1" representing the shortest distance from // the plane specified by normal and v0 to a point specified by // "vec". "u1" represents both the direction and magnitude of // this desired distance. // u1 = ( (normal vec) / (normal normal) ) * normal SGVec3f u1 = (dot(normal, vec) / dot(normal, normal)) * normal; // calculate the vector "v" which is the vector "vec" mapped onto // the plane specified by "normal" and "v0". // v = v0 + vec - u1 SGVec3f v = v0 + vec - u1; // Calculate the vector "result" which is "v" - "v0" which is a // directional vector pointing from v0 towards v // result = v - v0 return v - v0; } // Constructor FGLight::FGLight () : _ambient_tbl( NULL ), _diffuse_tbl( NULL ), _specular_tbl( NULL ), _sky_tbl( NULL ), _sun_lon(0), _sun_lat(0), _moon_lon(0), _moon_gc_lat(0), _sun_vec(0, 0, 0, 0), _moon_vec(0, 0, 0, 0), _sun_vec_inv(0, 0, 0, 0), _moon_vec_inv(0, 0, 0, 0), _sun_angle(0), _moon_angle(0), _prev_sun_angle(0), _sun_rotation(0), _moon_rotation(0), _scene_ambient(0, 0, 0, 0), _scene_diffuse(0, 0, 0, 0), _scene_specular(0, 0, 0, 0), _scene_chrome(0, 0, 0, 0), _sky_color(0, 0, 0, 0), _fog_color(0, 0, 0, 0), _cloud_color(0, 0, 0, 0), _adj_fog_color(0, 0, 0, 0), _adj_sky_color(0, 0, 0, 0), _dt_total(0) { } // Destructor FGLight::~FGLight () { delete _ambient_tbl; delete _diffuse_tbl; delete _specular_tbl; delete _sky_tbl; } // initialize lighting tables void FGLight::init () { SG_LOG( SG_EVENT, SG_INFO, "Initializing Lighting interpolation tables." ); // build the path names of the lookup tables SGPath path( globals->get_fg_root() ); // initialize ambient, diffuse and specular tables SGPath ambient_path = path; ambient_path.append( "Lighting/ambient" ); _ambient_tbl = new SGInterpTable( ambient_path.str() ); SGPath diffuse_path = path; diffuse_path.append( "Lighting/diffuse" ); _diffuse_tbl = new SGInterpTable( diffuse_path.str() ); SGPath specular_path = path; specular_path.append( "Lighting/specular" ); _specular_tbl = new SGInterpTable( specular_path.str() ); // initialize sky table SGPath sky_path = path; sky_path.append( "Lighting/sky" ); _sky_tbl = new SGInterpTable( sky_path.str() ); globals->get_event_mgr()->addTask("updateSunPos", this, &FGLight::updateSunPos, 0.5 ); } void FGLight::reinit () { _prev_sun_angle = -9999.0; _dt_total = 0; delete _ambient_tbl; delete _diffuse_tbl; delete _specular_tbl; delete _sky_tbl; init(); updateSunPos(); update_sky_color(); update_adj_fog_color(); } void FGLight::bind () { SGPropertyNode *prop = globals->get_props(); prop->tie("/sim/time/sun-angle-rad",SGRawValuePointer(&_sun_angle)); prop->tie("/rendering/scene/ambient/red",SGRawValuePointer(&_scene_ambient[0])); prop->tie("/rendering/scene/ambient/green",SGRawValuePointer(&_scene_ambient[1])); prop->tie("/rendering/scene/ambient/blue",SGRawValuePointer(&_scene_ambient[2])); prop->tie("/rendering/scene/diffuse/red",SGRawValuePointer(&_scene_diffuse[0])); prop->tie("/rendering/scene/diffuse/green",SGRawValuePointer(&_scene_diffuse[1])); prop->tie("/rendering/scene/diffuse/blue",SGRawValuePointer(&_scene_diffuse[2])); prop->tie("/rendering/scene/specular/red",SGRawValuePointer(&_scene_specular[0])); prop->tie("/rendering/scene/specular/green",SGRawValuePointer(&_scene_specular[1])); prop->tie("/rendering/scene/specular/blue",SGRawValuePointer(&_scene_specular[2])); prop->tie("/rendering/dome/sky/red",SGRawValuePointer(&_sky_color[0])); prop->tie("/rendering/dome/sky/green",SGRawValuePointer(&_sky_color[1])); prop->tie("/rendering/dome/sky/blue",SGRawValuePointer(&_sky_color[2])); prop->tie("/rendering/dome/fog/red",SGRawValuePointer(&_fog_color[0])); prop->tie("/rendering/dome/fog/green",SGRawValuePointer(&_fog_color[1])); prop->tie("/rendering/dome/fog/blue",SGRawValuePointer(&_fog_color[2])); // Properties used directly by effects _chromeProps[0] = prop->getNode("/rendering/scene/chrome-light/red", true); _chromeProps[1] = prop->getNode("/rendering/scene/chrome-light/green", true); _chromeProps[2] = prop->getNode("/rendering/scene/chrome-light/blue", true); _chromeProps[3] = prop->getNode("/rendering/scene/chrome-light/alpha", true); for (int i = 0; i < 4; ++i) _chromeProps[i]->setValue(0.0); } void FGLight::unbind () { SGPropertyNode *prop = globals->get_props(); prop->untie("/sim/time/sun-angle-rad"); prop->untie("/rendering/scene/ambient/red"); prop->untie("/rendering/scene/ambient/green"); prop->untie("/rendering/scene/ambient/blue"); prop->untie("/rendering/scene/diffuse/red"); prop->untie("/rendering/scene/diffuse/green"); prop->untie("/rendering/scene/diffuse/blue"); prop->untie("/rendering/scene/specular/red"); prop->untie("/rendering/scene/specular/green"); prop->untie("/rendering/scene/specular/blue"); prop->untie("/rendering/dome/sun/red"); prop->untie("/rendering/dome/sun/green"); prop->untie("/rendering/dome/sun/blue"); prop->untie("/rendering/dome/sky/red"); prop->untie("/rendering/dome/sky/green"); prop->untie("/rendering/dome/sky/blue"); prop->untie("/rendering/dome/fog/red"); prop->untie("/rendering/dome/fog/green"); prop->untie("/rendering/dome/fog/blue"); } // update lighting parameters based on current sun position void FGLight::update( double dt ) { update_adj_fog_color(); if (_prev_sun_angle != _sun_angle) { _prev_sun_angle = _sun_angle; update_sky_color(); } } void FGLight::update_sky_color () { // if the 4th field is 0.0, this specifies a direction ... // const GLfloat white[4] = { 1.0, 1.0, 1.0, 1.0 }; const GLfloat base_sky_color[4] = { 0.31, 0.43, 0.69, 1.0 }; const GLfloat base_fog_color[4] = { 0.63, 0.72, 0.88, 1.0 }; SG_LOG( SG_EVENT, SG_DEBUG, "Updating light parameters." ); // calculate lighting parameters based on sun's relative angle to // local up static SGConstPropertyNode_ptr humidity = fgGetNode("/environment/relative-humidity"); float av = humidity->getFloatValue() * 45; float visibility_log = log(av)/11.0; float visibility_inv = (45000.0 - av)/45000.0; float deg = _sun_angle * SGD_RADIANS_TO_DEGREES; SG_LOG( SG_EVENT, SG_DEBUG, " Sun angle = " << deg ); float ambient = _ambient_tbl->interpolate( deg ) + visibility_inv/10; float diffuse = _diffuse_tbl->interpolate( deg ); float specular = _specular_tbl->interpolate( deg ) * visibility_log; float sky_brightness = _sky_tbl->interpolate( deg ); SG_LOG( SG_EVENT, SG_DEBUG, " ambient = " << ambient << " diffuse = " << diffuse << " specular = " << specular << " sky = " << sky_brightness ); // sky_brightness = 0.15; // used to force a dark sky (when testing) // set fog and cloud color float sqrt_sky_brightness = 1.0 - sqrt(1.0 - sky_brightness); _fog_color[0] = base_fog_color[0] * sqrt_sky_brightness; _fog_color[1] = base_fog_color[1] * sqrt_sky_brightness; _fog_color[2] = base_fog_color[2] * sqrt_sky_brightness; _fog_color[3] = base_fog_color[3]; gamma_correct_rgb( _fog_color.data() ); // set sky color _sky_color[0] = base_sky_color[0] * sky_brightness; _sky_color[1] = base_sky_color[1] * sky_brightness; _sky_color[2] = base_sky_color[2] * sky_brightness; _sky_color[3] = base_sky_color[3]; gamma_correct_rgb( _sky_color.data() ); _cloud_color[0] = base_fog_color[0] * sky_brightness; _cloud_color[1] = base_fog_color[1] * sky_brightness; _cloud_color[2] = base_fog_color[2] * sky_brightness; _cloud_color[3] = base_fog_color[3]; // adjust the cloud colors for sunrise/sunset effects (darken them) if (_sun_angle > 1.0) { float sun2 = sqrt(_sun_angle); _cloud_color[0] /= sun2; _cloud_color[1] /= sun2; _cloud_color[2] /= sun2; } gamma_correct_rgb( _cloud_color.data() ); _scene_ambient[0] = _fog_color[0] * ambient; _scene_ambient[1] = _fog_color[1] * ambient; _scene_ambient[2] = _fog_color[2] * ambient; _scene_ambient[3] = 1.0; gamma_correct_rgb( _scene_ambient.data() ); SGVec4f color = thesky->get_scene_color(); _scene_diffuse[0] = color[0] * diffuse; _scene_diffuse[1] = color[1] * diffuse; _scene_diffuse[2] = color[2] * diffuse; _scene_diffuse[3] = 1.0; gamma_correct_rgb( _scene_diffuse.data() ); SGVec4f chrome = _scene_ambient * .4f + _scene_diffuse; chrome[3] = 1.0f; if (chrome != _scene_chrome) { _scene_chrome = chrome; for (int i = 0; i < 4; ++i) _chromeProps[i]->setValue(static_cast(_scene_chrome[i])); } color = thesky->get_sun_color(); _scene_specular[0] = color[0] * specular; _scene_specular[1] = color[1] * specular; _scene_specular[2] = color[2] * specular; _scene_specular[3] = 1.0; gamma_correct_rgb( _scene_specular.data() ); } // calculate fog color adjusted for sunrise/sunset effects void FGLight::update_adj_fog_color () { double pitch = globals->get_current_view()->getPitch_deg() * SGD_DEGREES_TO_RADIANS; double pitch_offset = globals->get_current_view()-> getPitchOffset_deg() * SGD_DEGREES_TO_RADIANS; double heading = globals->get_current_view()->getHeading_deg() * SGD_DEGREES_TO_RADIANS; double heading_offset = globals->get_current_view()->getHeadingOffset_deg() * SGD_DEGREES_TO_RADIANS; SG_LOG( SG_EVENT, SG_DEBUG, "Updating adjusted fog parameters." ); // set fog color (we'll try to match the sunset color in the // direction we are looking // Do some sanity checking ... if ( _sun_rotation < -2.0 * SGD_2PI || _sun_rotation > 2.0 * SGD_2PI ) { SG_LOG( SG_EVENT, SG_ALERT, "Sun rotation bad = " << _sun_rotation ); return; } if ( heading < -2.0 * SGD_2PI || heading > 2.0 * SGD_2PI ) { SG_LOG( SG_EVENT, SG_ALERT, "Heading rotation bad = " << heading ); return; } if ( heading_offset < -2.0 * SGD_2PI || heading_offset > 2.0 * SGD_2PI ) { SG_LOG( SG_EVENT, SG_ALERT, "Heading offset bad = " << heading_offset ); return; } double hor_rotation, vert_rotation; static float gamma = system_gamma; // first determine the difference between our view angle and local // direction to the sun vert_rotation = pitch + pitch_offset; hor_rotation = -(_sun_rotation + SGD_PI) - heading + heading_offset; if (hor_rotation < 0 ) hor_rotation = fmod(hor_rotation, SGD_2PI) + SGD_2PI; else hor_rotation = fmod(hor_rotation, SGD_2PI); // revert to unmodified values before usign them. // SGVec4f color = thesky->get_scene_color(); gamma_restore_rgb( _fog_color.data(), gamma ); gamma_restore_rgb( _sky_color.data(), gamma ); // Calculate the fog color in the direction of the sun for // sunrise/sunset effects. // float s_red = color[0]*color[0]*color[0]; float s_green = color[1]*color[1]*color[1]; float s_blue = color[2]*color[2]; // interpolate beween the sunrise/sunset color and the color // at the opposite direction of this effect. Take in account // the current visibility. // float av = thesky->get_visibility(); if (av > 45000) av = 45000; float avf = 0.87 - (45000 - av) / 83333.33; float sif = 0.5 - cos(_sun_angle*2)/2; if (sif < 1e-4) sif = 1e-4; float rf1 = fabs((hor_rotation - SGD_PI) / SGD_PI); // 0.0 .. 1.0 float rf2 = avf * pow(rf1*rf1, 1/sif) * 1.0639; float rf3 = 1.0 - rf2; gamma = system_gamma * (0.9 - sif*avf); _adj_fog_color[0] = rf3 * _fog_color[0] + rf2 * s_red; _adj_fog_color[1] = rf3 * _fog_color[1] + rf2 * s_green; _adj_fog_color[2] = rf3 * _fog_color[2] + rf2 * s_blue; gamma_correct_rgb( _adj_fog_color.data(), gamma); // make sure the colors have their original value before they are being // used by the rest of the program. // gamma_correct_rgb( _fog_color.data(), gamma ); gamma_correct_rgb( _sky_color.data(), gamma ); } // update the cur_time_params structure with the current sun position void FGLight::updateSunPos() { SGTime *t = globals->get_time_params(); FGViewer *v = globals->get_current_view(); SG_LOG( SG_EVENT, SG_DEBUG, " Updating Sun position" ); SG_LOG( SG_EVENT, SG_DEBUG, " Gst = " << t->getGst() ); double sun_l; double sun_gd_lat; fgSunPositionGST(t->getGst(), &sun_l, &sun_gd_lat); set_sun_lon(sun_l); set_sun_lat(sun_gd_lat); SGVec3d sunpos(SGVec3d::fromGeod(SGGeod::fromRad(sun_l, sun_gd_lat))); SG_LOG( SG_EVENT, SG_DEBUG, " t->cur_time = " << t->get_cur_time() ); SG_LOG( SG_EVENT, SG_DEBUG, " Sun Geodetic lat = " << sun_gd_lat << " Geodetic lat = " << sun_gd_lat ); // update the sun light vector sun_vec() = SGVec4f(toVec3f(normalize(sunpos)), 0); sun_vec_inv() = - sun_vec(); // calculate the sun's relative angle to local up SGVec3d viewPos = v->get_view_pos(); SGQuatd hlOr = SGQuatd::fromLonLat(SGGeod::fromCart(viewPos)); SGVec3f world_up = toVec3f(hlOr.backTransform(-SGVec3d::e3())); SGVec3f nsun = toVec3f(normalize(sunpos)); // cout << "nup = " << nup[0] << "," << nup[1] << "," // << nup[2] << endl; // cout << "nsun = " << nsun[0] << "," << nsun[1] << "," // << nsun[2] << endl; set_sun_angle( acos( dot ( world_up, nsun ) ) ); SG_LOG( SG_EVENT, SG_DEBUG, "sun angle relative to current location = " << get_sun_angle() ); // calculate vector to sun's position on the earth's surface SGVec3d rel_sunpos = sunpos - v->get_view_pos(); // vector in cartesian coordinates from current position to the // postion on the earth's surface the sun is directly over SGVec3f to_sun = toVec3f(rel_sunpos); // printf( "Vector to sun = %.2f %.2f %.2f\n", // v->to_sun[0], v->to_sun[1], v->to_sun[2]); // Given a vector from the view position to the point on the // earth's surface the sun is directly over, map into onto the // local plane representing "horizontal". // surface direction to go to head towards sun SGVec3f surface_to_sun; SGVec3f view_pos = toVec3f(v->get_view_pos()); surface_to_sun = map_vec_onto_cur_surface_plane(world_up, view_pos, to_sun); surface_to_sun = normalize(surface_to_sun); // cout << "(sg) Surface direction to sun is " // << surface_to_sun[0] << "," // << surface_to_sun[1] << "," // << surface_to_sun[2] << endl; // cout << "Should be close to zero = " // << sgScalarProductVec3(nup, surface_to_sun) << endl; // calculate the angle between surface_to_sun and // v->get_surface_east(). We do this so we can sort out the // acos() ambiguity. I wish I could think of a more efficient // way. :-( SGVec3f surface_east(toVec3f(hlOr.backTransform(SGVec3d::e2()))); float east_dot = dot( surface_to_sun, surface_east ); // cout << " East dot product = " << east_dot << endl; // calculate the angle between v->surface_to_sun and // v->surface_south. this is how much we have to rotate the sky // for it to align with the sun SGVec3f surface_south(toVec3f(hlOr.backTransform(-SGVec3d::e1()))); float dot_ = dot( surface_to_sun, surface_south ); // cout << " Dot product = " << dot << endl; if (dot_ > 1.0) { SG_LOG( SG_ASTRO, SG_INFO, "Dot product = " << dot_ << " is greater than 1.0" ); dot_ = 1.0; } else if (dot_ < -1.0) { SG_LOG( SG_ASTRO, SG_INFO, "Dot product = " << dot_ << " is less than -1.0" ); dot_ = -1.0; } if ( east_dot >= 0 ) { set_sun_rotation( acos(dot_) ); } else { set_sun_rotation( -acos(dot_) ); } // cout << " Sky needs to rotate = " << angle << " rads = " // << angle * SGD_RADIANS_TO_DEGREES << " degrees." << endl; }