// FGAIShip - FGAIBase-derived class creates an AI ship // // Written by David Culp, started October 2003. // with major amendments and additions by Vivian Meazza, 2004 - 2007 // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. #ifdef HAVE_CONFIG_H # include #endif #ifdef _MSC_VER # include # define finite _finite #elif defined(__sun) || defined(sgi) # include #endif #include #include #include #include #include #include "AIShip.hxx" FGAIShip::FGAIShip(object_type ot) : FGAIBase(ot), _dt_count(0), _next_run(0) { } FGAIShip::~FGAIShip() { } void FGAIShip::readFromScenario(SGPropertyNode* scFileNode) { if (!scFileNode) return; FGAIBase::readFromScenario(scFileNode); setRudder(scFileNode->getFloatValue("rudder", 0.0)); setName(scFileNode->getStringValue("name", "Titanic")); setRadius(scFileNode->getDoubleValue("turn-radius-ft", 2000)); std::string flightplan = scFileNode->getStringValue("flightplan"); setRepeat(scFileNode->getBoolValue("repeat", false)); setStartTime(scFileNode->getStringValue("time", "")); if (!flightplan.empty()) { FGAIFlightPlan* fp = new FGAIFlightPlan(flightplan); setFlightPlan(fp); } } bool FGAIShip::init(bool search_in_AI_path) { prev = 0; // the one behind you curr = 0; // the one ahead next = 0; // the next plus 1 _until_time = ""; props->setStringValue("name", _name.c_str()); props->setStringValue("position/waypoint-name-prev", _prev_name.c_str()); props->setStringValue("position/waypoint-name-curr", _curr_name.c_str()); props->setStringValue("position/waypoint-name-next", _next_name.c_str()); props->setStringValue("submodels/path", _path.c_str()); props->setStringValue("position/waypoint-start-time", _start_time.c_str()); props->setStringValue("position/waypoint-wait-until-time", _until_time.c_str()); _hdg_lock = false; _rudder = 0.0; no_roll = false; _rudder_constant = 0.5; _roll_constant = 0.001; _speed_constant = 0.05; _hdg_constant = 0.01; _roll_factor = -0.0083335; _rd_turn_radius_ft = _sp_turn_radius_ft = turn_radius_ft; _fp_init = false; _missed = false; _waiting = false; _new_waypoint = true; _missed_count = 0; _wait_count = 0; _missed_time_sec = 30; _day = 86400; _wp_range = _old_range = 0; _range_rate = 0; if (fp) _fp_init = initFlightPlan(); return FGAIBase::init(search_in_AI_path); } void FGAIShip::initModel(osg::Node *node) { FGAIBase::initModel(node); model->setNodeMask(model->getNodeMask() | SG_NODEMASK_TERRAIN_BIT); } void FGAIShip::bind() { FGAIBase::bind(); props->tie("surface-positions/rudder-pos-deg", SGRawValuePointer(&_rudder)); props->tie("controls/heading-lock", SGRawValuePointer(&_hdg_lock)); props->tie("controls/tgt-speed-kts", SGRawValuePointer(&tgt_speed)); props->tie("controls/tgt-heading-degs", SGRawValuePointer(&tgt_heading)); props->tie("controls/constants/rudder", SGRawValuePointer(&_rudder_constant)); props->tie("controls/constants/roll-factor", SGRawValuePointer(&_roll_factor)); props->tie("controls/constants/roll", SGRawValuePointer(&_roll_constant)); props->tie("controls/constants/rudder", SGRawValuePointer(&_rudder_constant)); props->tie("controls/constants/speed", SGRawValuePointer(&_speed_constant)); props->tie("position/waypoint-range-nm", SGRawValuePointer(&_wp_range)); props->tie("position/waypoint-range-old-nm", SGRawValuePointer(&_old_range)); props->tie("position/waypoint-range-rate-nm-sec", SGRawValuePointer(&_range_rate)); props->tie("position/waypoint-new", SGRawValuePointer(&_new_waypoint)); props->tie("position/waypoint-missed", SGRawValuePointer(&_missed)); props->tie("position/waypoint-missed-count", SGRawValuePointer(&_missed_count)); props->tie("position/waypoint-missed-time-sec", SGRawValuePointer(&_missed_time_sec)); props->tie("position/waypoint-wait-count", SGRawValuePointer(&_wait_count)); props->tie("position/waypoint-waiting", SGRawValuePointer(&_waiting)); props->tie("submodels/serviceable", SGRawValuePointer(&_serviceable)); } void FGAIShip::unbind() { FGAIBase::unbind(); props->untie("surface-positions/rudder-pos-deg"); props->untie("controls/heading-lock"); props->untie("controls/tgt-speed-kts"); props->untie("controls/tgt-heading-degs"); props->untie("controls/constants/roll"); props->untie("controls/constants/rudder"); props->untie("controls/constants/roll-factor"); props->untie("controls/constants/speed"); props->untie("position/waypoint-range-nm"); props->untie("position/waypoint-range-old-nm"); props->untie("position/waypoint-range-rate-nm-sec"); props->untie("position/waypoint-new"); props->untie("position/waypoint-missed"); props->untie("position/waypoint-missed-count"); props->untie("position/waypoint-missed-time-sec"); props->untie("position/waypoint-wait-count"); props->untie("position/waypoint-waiting"); props->untie("submodels/serviceable"); } void FGAIShip::update(double dt) { // For computation of rotation speeds we just use finite differences here. // That is perfectly valid since this thing is not driven by accelerations // but by just apply discrete changes at its velocity variables. // Update the velocity information stored in those nodes. // Transform that one to the horizontal local coordinate system. SGQuatd ec2hl = SGQuatd::fromLonLat(pos); // The orientation of the carrier wrt the horizontal local frame SGQuatd hl2body = SGQuatd::fromYawPitchRollDeg(hdg, pitch, roll); // and postrotate the orientation of the AIModel wrt the horizontal // local frame SGQuatd ec2body = ec2hl*hl2body; // The cartesian position of the carrier in the wgs84 world SGVec3d cartPos = SGVec3d::fromGeod(pos); // The simulation time this transform is meant for aip.setReferenceTime(globals->get_sim_time_sec() + dt); // Compute the velocity in m/s in the body frame aip.setBodyLinearVelocity(SGVec3d(0.51444444*speed, 0, 0)); FGAIBase::update(dt); Run(dt); Transform(); // Only change these values if we are able to compute them safely if (SGLimits::min() < dt) { // Now here is the finite difference ... // Transform that one to the horizontal local coordinate system. SGQuatd ec2hlNew = SGQuatd::fromLonLat(pos); // compute the new orientation SGQuatd hl2bodyNew = SGQuatd::fromYawPitchRollDeg(hdg, pitch, roll); // The rotation difference SGQuatd dOr = inverse(ec2body)*ec2hlNew*hl2bodyNew; SGVec3d dOrAngleAxis; dOr.getAngleAxis(dOrAngleAxis); // divided by the time difference provides a rotation speed vector dOrAngleAxis /= dt; aip.setBodyAngularVelocity(dOrAngleAxis); } } void FGAIShip::Run(double dt) { //cout << _name << " init: " << _fp_init << endl; if (_fp_init) ProcessFlightPlan(dt); // double speed_north_deg_sec; // double speed_east_deg_sec; double alpha; double rudder_limit; double raw_roll; // adjust speed double speed_diff = tgt_speed - speed; if (fabs(speed_diff) > 0.1) { if (speed_diff > 0.0) speed += _speed_constant * dt; if (speed_diff < 0.0) speed -= _speed_constant * dt; } // do not allow unreasonable ship speeds if (speed > 40) speed = 40; // convert speed to degrees per second speed_north_deg_sec = cos(hdg / SGD_RADIANS_TO_DEGREES) * speed * 1.686 / ft_per_deg_lat; speed_east_deg_sec = sin(hdg / SGD_RADIANS_TO_DEGREES) * speed * 1.686 / ft_per_deg_lon; // set new position pos.setLatitudeDeg(pos.getLatitudeDeg() + speed_north_deg_sec * dt); pos.setLongitudeDeg(pos.getLongitudeDeg() + speed_east_deg_sec * dt); // adjust heading based on current _rudder angle //cout << "turn_radius_ft " << turn_radius_ft ; if (turn_radius_ft <= 0) turn_radius_ft = 0; // don't allow nonsense values if (_rudder > 45) _rudder = 45; if (_rudder < -45) _rudder = -45; //we assume that at slow speed ships will manoeuvre using engines/bow thruster if (fabs(speed)<=5) _sp_turn_radius_ft = 500; else // adjust turn radius for speed. The equation is very approximate. // we need to allow for negative speeds _sp_turn_radius_ft = 10 * pow ((fabs(speed) - 15), 2) + turn_radius_ft; //cout << " speed turn radius " << _sp_turn_radius_ft ; if (_rudder <= -0.25 || _rudder >= 0.25) { // adjust turn radius for _rudder angle. The equation is even more approximate. float a = 19; float b = -0.2485; float c = 0.543; _rd_turn_radius_ft = (a * exp(b * fabs(_rudder)) + c) * _sp_turn_radius_ft; //cout <<" _rudder turn radius " << _rd_turn_radius_ft << endl; // calculate the angle, alpha, subtended by the arc traversed in time dt alpha = ((speed * 1.686 * dt) / _rd_turn_radius_ft) * SG_RADIANS_TO_DEGREES; // make sure that alpha is applied in the right direction hdg += alpha * sign(_rudder); if (hdg > 360.0) hdg -= 360.0; if (hdg < 0.0) hdg += 360.0; //adjust roll for rudder angle and speed. Another bit of voodoo raw_roll = _roll_factor * speed * _rudder; } else { // _rudder angle is 0 raw_roll = 0; } //low pass filter if (speed < 0) roll = -roll; roll = (raw_roll * _roll_constant) + (roll * (1 - _roll_constant)); // adjust target _rudder angle if heading lock engaged double rudder_diff = 0.0; if (_hdg_lock) { double rudder_sense = 0.0; double diff = fabs(hdg - tgt_heading); //cout << "_rudder diff" << diff << endl; if (diff > 180) diff = fabs(diff - 360); double sum = hdg + diff; if (sum > 360.0) sum -= 360.0; if (fabs(sum - tgt_heading)< 1.0) rudder_sense = 1.0; else rudder_sense = -1.0; if (speed < 0) rudder_sense = -rudder_sense; if (diff < 15) _tgt_rudder = diff * rudder_sense; else _tgt_rudder = 45 * rudder_sense; rudder_diff = _tgt_rudder - _rudder; } // set the _rudder limit by speed if (speed <= 40) rudder_limit = (-0.825 * speed) + 35; else rudder_limit = 2; if (fabs(rudder_diff)> 0.1) { // apply dead zone if (rudder_diff > 0.0) { _rudder += _rudder_constant * dt; if (_rudder > rudder_limit) // apply the _rudder limit _rudder = rudder_limit; } else if (rudder_diff < 0.0) { _rudder -= _rudder_constant * dt; if (_rudder < -rudder_limit) _rudder = -rudder_limit; } // do calculations for radar UpdateRadar(manager); } }//end function void FGAIShip::AccelTo(double speed) { tgt_speed = speed; } void FGAIShip::PitchTo(double angle) { tgt_pitch = angle; } void FGAIShip::RollTo(double angle) { tgt_roll = angle; } void FGAIShip::YawTo(double angle) { } void FGAIShip::ClimbTo(double altitude) { } void FGAIShip::TurnTo(double heading) { tgt_heading = heading; _hdg_lock = true; } double FGAIShip::sign(double x) { if (x < 0.0) return -1.0; else return 1.0; } void FGAIShip::setFlightPlan(FGAIFlightPlan* f) { fp = f; } void FGAIShip::setName(const string& n) { _name = n; } void FGAIShip::setStartTime(const string& st) { _start_time = st; } void FGAIShip::setUntilTime(const string& ut) { _until_time = ut; props->setStringValue("position/waypoint-wait-until-time", _until_time.c_str()); } void FGAIShip::setCurrName(const string& c) { _curr_name = c; props->setStringValue("position/waypoint-name-curr", _curr_name.c_str()); } void FGAIShip::setNextName(const string& n) { _next_name = n; props->setStringValue("position/waypoint-name-next", _next_name.c_str()); } void FGAIShip::setPrevName(const string& p) { _prev_name = p; props->setStringValue("position/waypoint-name-prev", _prev_name.c_str()); } void FGAIShip::setRepeat(bool r) { _repeat = r; } void FGAIShip::setMissed(bool m) { _missed = m; props->setBoolValue("position/waypoint-missed", _missed); } void FGAIShip::setRudder(float r) { _rudder = r; } void FGAIShip::setRoll(double rl) { roll = rl; } void FGAIShip::setWPNames() { if (prev != 0) setPrevName(prev->name); else setPrevName(""); setCurrName(curr->name); if (next != 0) setNextName(next->name); else setNextName(""); SG_LOG(SG_GENERAL, SG_DEBUG, "AIShip: prev wp name " << prev->name); SG_LOG(SG_GENERAL, SG_DEBUG, "AIShip: current wp name " << curr->name); SG_LOG(SG_GENERAL, SG_DEBUG, "AIShip: next wp name " << next->name); } double FGAIShip::getRange(double lat, double lon, double lat2, double lon2) const { double course, distance, az2; //calculate the bearing and range of the second pos from the first geo_inverse_wgs_84(lat, lon, lat2, lon2, &course, &az2, &distance); distance *= SG_METER_TO_NM; return distance; } double FGAIShip::getCourse(double lat, double lon, double lat2, double lon2) const { double course, distance, recip; //calculate the bearing and range of the second pos from the first geo_inverse_wgs_84(lat, lon, lat2, lon2, &course, &recip, &distance); if (tgt_speed >= 0) { return course; } else { return recip; } } void FGAIShip::ProcessFlightPlan(double dt) { double time_sec = getDaySeconds(); double until_time_sec = 0; _missed = false; _dt_count += dt; /////////////////////////////////////////////////////////////////////////// // Check Execution time (currently once every 1 sec) // Add a bit of randomization to prevent the execution of all flight plans // in synchrony, which can add significant periodic framerate flutter. /////////////////////////////////////////////////////////////////////////// //cout << "_start_sec " << _start_sec << " time_sec " << time_sec << endl; if (_dt_count < _next_run && _start_sec < time_sec) return; _next_run = 1.0 + (0.5 * sg_random()); // check to see if we've reached the point for our next turn // if the range to the waypoint is less than the calculated turn // radius we can start the turn to the next leg _wp_range = getRange(pos.getLatitudeDeg(), pos.getLongitudeDeg(), curr->latitude, curr->longitude); _range_rate = (_wp_range - _old_range) / _dt_count; double sp_turn_radius_nm = _sp_turn_radius_ft / 6076.1155; // we need to try to identify a _missed waypoint // calculate the time needed to turn through an arc of 90 degrees, and allow an error of 30 secs if (speed != 0) _missed_time_sec = 30 + ((SGD_PI * sp_turn_radius_nm * 60 * 60) / (2 * fabs(speed))); else _missed_time_sec = 30; if ((_range_rate > 0) && (_wp_range < 3 * sp_turn_radius_nm) && !_new_waypoint) _missed_count += _dt_count; if (_missed_count >= _missed_time_sec) { setMissed(true); } else { setMissed(false); } _old_range = _wp_range; setWPNames(); if ((_wp_range < sp_turn_radius_nm) || _missed || _waiting && !_new_waypoint) { if (_next_name == "END") { if (_repeat) { SG_LOG(SG_GENERAL, SG_DEBUG, "AIShip: Flightplan restarting "); fp->restart(); prev = curr; curr = fp->getCurrentWaypoint(); next = fp->getNextWaypoint(); setWPNames(); _wp_range = getRange(pos.getLatitudeDeg(), pos.getLongitudeDeg(), curr->latitude, curr->longitude); _old_range = _wp_range; _range_rate = 0; _new_waypoint = true; _missed_count = 0; AccelTo(prev->speed); } else { SG_LOG(SG_GENERAL, SG_DEBUG, "AIShip: Flightplan dieing "); setDie(true); _dt_count = 0; return; } } else if (_next_name == "WAIT") { if (_wait_count < next->time_sec) { SG_LOG(SG_GENERAL, SG_DEBUG, "AIShip: " << _name << " waiting "); setSpeed(0); _waiting = true; _wait_count += _dt_count; _dt_count = 0; return; } else { SG_LOG(SG_GENERAL, SG_DEBUG, "AIShip: " << _name << " wait done: getting new waypoints "); _waiting = false; _wait_count = 0; fp->IncrementWaypoint(false); next = fp->getNextWaypoint(); if (next->name == "WAITUNTIL" || next->name == "WAIT" || next->name == "END") return; prev = curr; fp->IncrementWaypoint(false); curr = fp->getCurrentWaypoint(); next = fp->getNextWaypoint(); } } else if (_next_name == "WAITUNTIL") { time_sec = getDaySeconds(); until_time_sec = processTimeString(next->time); _until_time = next->time; setUntilTime(next->time); if (until_time_sec > time_sec) { SG_LOG(SG_GENERAL, SG_DEBUG, "AIShip: " << _name << " waiting until: " << _until_time << " " << until_time_sec << " now " << time_sec ); setSpeed(0); _waiting = true; return; } else { SG_LOG(SG_GENERAL, SG_DEBUG, "AIShip: " << _name << " wait until done: getting new waypoints "); setUntilTime(""); fp->IncrementWaypoint(false); while (next->name == "WAITUNTIL") { fp->IncrementWaypoint(false); next = fp->getNextWaypoint(); } if (next->name == "WAIT") return; prev = curr; fp->IncrementWaypoint(false); curr = fp->getCurrentWaypoint(); next = fp->getNextWaypoint(); _waiting = false; } } else { //now reorganise the waypoints, so that next becomes current and so on SG_LOG(SG_GENERAL, SG_DEBUG, "AIShip: " << _name << " getting new waypoints "); fp->IncrementWaypoint(false); prev = fp->getPreviousWaypoint(); //first waypoint curr = fp->getCurrentWaypoint(); //second waypoint next = fp->getNextWaypoint(); //third waypoint (might not exist!) } setWPNames(); _new_waypoint = true; _missed_count = 0; _range_rate = 0; _wp_range = getRange(pos.getLatitudeDeg(), pos.getLongitudeDeg(), curr->latitude, curr->longitude); _old_range = _wp_range; AccelTo(prev->speed); } else { _new_waypoint = false; } // now revise the required course for the next way point double course = getCourse(pos.getLatitudeDeg(), pos.getLongitudeDeg(), curr->latitude, curr->longitude); if (finite(course)) TurnTo(course); else SG_LOG(SG_GENERAL, SG_DEBUG, "AIShip: Bearing or Range is not a finite number"); _dt_count = 0; } // end Processing FlightPlan bool FGAIShip::initFlightPlan() { SG_LOG(SG_GENERAL, SG_DEBUG, "AIShip: " << _name << " initializing waypoints "); bool init = false; _start_sec = 0; fp->restart(); fp->IncrementWaypoint(false); prev = fp->getPreviousWaypoint(); //first waypoint curr = fp->getCurrentWaypoint(); //second waypoint next = fp->getNextWaypoint(); //third waypoint (might not exist!) while (curr->name == "WAIT" || curr->name == "WAITUNTIL") { // don't wait when initialising SG_LOG(SG_GENERAL, SG_DEBUG, "AIShip: " << _name << " re-initializing waypoints "); fp->IncrementWaypoint(false); curr = fp->getCurrentWaypoint(); next = fp->getNextWaypoint(); } if (!_start_time.empty()){ _start_sec = processTimeString(_start_time); double day_sec = getDaySeconds(); if (_start_sec < day_sec){ //cout << "flight plan has already started " << _start_time << endl; init = advanceFlightPlan(_start_sec, day_sec); } else if (_start_sec > day_sec && _repeat) { //cout << "flight plan has not started, " << _start_time; //cout << "offsetting start time by -24 hrs" << endl; _start_sec -= _day; init = advanceFlightPlan(_start_sec, day_sec); } if (init) _start_sec = 0; // set to zero for an immediate start of the Flight Plan else { fp->restart(); fp->IncrementWaypoint(false); prev = fp->getPreviousWaypoint(); curr = fp->getCurrentWaypoint(); next = fp->getNextWaypoint(); return false; } } else { setLatitude(prev->latitude); setLongitude(prev->longitude); setSpeed(prev->speed); } setWPNames(); setHeading(getCourse(prev->latitude, prev->longitude, curr->latitude, curr->longitude)); _wp_range = getRange(prev->latitude, prev->longitude, curr->latitude, curr->longitude); _old_range = _wp_range; _range_rate = 0; _hdg_lock = true; _missed = false; _missed_count = 0; _new_waypoint = true; SG_LOG(SG_GENERAL, SG_DEBUG, "AIShip: " << _name << " done initialising waypoints "); if (prev) init = true; if (init) return true; else return false; } // end of initialization double FGAIShip::processTimeString(const string& theTime) { int Hour; int Minute; int Second; // first split theTime string into // hour, minute, second and convert to int; Hour = atoi(theTime.substr(0,2).c_str()); Minute = atoi(theTime.substr(3,5).c_str()); Second = atoi(theTime.substr(6,8).c_str()); // offset by a day-sec to allow for starting a day earlier double time_seconds = Hour * 3600 + Minute * 60 + Second; return time_seconds; } double FGAIShip::getDaySeconds () { // Date and time struct tm *t = globals->get_time_params()->getGmt(); double day_seconds = t->tm_hour * 3600 + t->tm_min * 60 + t->tm_sec; return day_seconds; } bool FGAIShip::advanceFlightPlan (double start_sec, double day_sec) { double elapsed_sec = start_sec; double distance_nm = 0; //cout << "advancing flight plan start_sec: " << start_sec << " " << day_sec << endl; while ( elapsed_sec < day_sec ) { if (next->name == "END") { if (_repeat ) { //cout << _name << ": " << "restarting flightplan" << endl; fp->restart(); curr = fp->getCurrentWaypoint(); next = fp->getNextWaypoint(); } else { //cout << _name << ": " << "ending flightplan" << endl; setDie(true); return false; } } else if (next->name == "WAIT") { //cout << _name << ": begin WAIT: " << prev->name << " "; //cout << curr->name << " " << next->name << endl; elapsed_sec += next->time_sec; if ( elapsed_sec >= day_sec) continue; fp->IncrementWaypoint(false); next = fp->getNextWaypoint(); if (next->name != "WAITUNTIL" && next->name != "WAIT" && next->name != "END") { prev = curr; fp->IncrementWaypoint(false); curr = fp->getCurrentWaypoint(); next = fp->getNextWaypoint(); } } else if (next->name == "WAITUNTIL") { double until_sec = processTimeString(next->time); if (until_sec > _start_sec && start_sec < 0) until_sec -= _day; if (elapsed_sec < until_sec) elapsed_sec = until_sec; if (elapsed_sec >= day_sec ) break; fp->IncrementWaypoint(false); next = fp->getNextWaypoint(); if (next->name != "WAITUNTIL" && next->name != "WAIT") { prev = curr; fp->IncrementWaypoint(false); curr = fp->getCurrentWaypoint(); next = fp->getNextWaypoint(); } //cout << _name << ": end WAITUNTIL: "; //cout << prev->name << " " << curr->name << " " << next->name << endl; } else { distance_nm = getRange(prev->latitude, prev->longitude, curr->latitude, curr->longitude); elapsed_sec += distance_nm * 60 * 60 / prev->speed; if (elapsed_sec >= day_sec) continue; fp->IncrementWaypoint(false); prev = fp->getPreviousWaypoint(); curr = fp->getCurrentWaypoint(); next = fp->getNextWaypoint(); } } // end while // the required position lies between the previous and current waypoints // so we will calculate the distance back up the track from the current waypoint // then calculate the lat and lon. /*cout << "advancing flight plan done elapsed_sec: " << elapsed_sec << " " << day_sec << endl;*/ double time_diff = elapsed_sec - day_sec; double lat, lon, recip; //cout << " time diff " << time_diff << endl; if (next->name == "WAIT" ){ setSpeed(0); lat = curr->latitude; lon = curr->longitude; _wait_count= time_diff; _waiting = true; } else if (next->name == "WAITUNTIL") { setSpeed(0); lat = curr->latitude; lon = curr->longitude; _waiting = true; } else { setSpeed(prev->speed); distance_nm = speed * time_diff / (60 * 60); double brg = getCourse(curr->latitude, curr->longitude, prev->latitude, prev->longitude); //cout << " brg " << brg << " from " << curr->name << " to " << prev->name << " " // << " lat " << curr->latitude << " lon " << curr->longitude // << " distance m " << distance_nm * SG_NM_TO_METER << endl; lat = geo_direct_wgs_84 (curr->latitude, curr->longitude, brg, distance_nm * SG_NM_TO_METER, &lat, &lon, &recip ); lon = geo_direct_wgs_84 (curr->latitude, curr->longitude, brg, distance_nm * SG_NM_TO_METER, &lat, &lon, &recip ); recip = geo_direct_wgs_84 (curr->latitude, curr->longitude, brg, distance_nm * SG_NM_TO_METER, &lat, &lon, &recip ); } //cout << "Pos " << lat << ", " << lon << " recip " << recip << endl; setLatitude(lat); setLongitude(lon); return true; }