/*************************************************************************** TITLE: ls_geodesy ---------------------------------------------------------------------------- FUNCTION: Converts geocentric coordinates to geodetic positions ---------------------------------------------------------------------------- MODULE STATUS: developmental ---------------------------------------------------------------------------- GENEALOGY: Written as part of LaRCSim project by E. B. Jackson ---------------------------------------------------------------------------- DESIGNED BY: E. B. Jackson CODED BY: E. B. Jackson MAINTAINED BY: E. B. Jackson ---------------------------------------------------------------------------- MODIFICATION HISTORY: DATE PURPOSE BY 930208 Modified to avoid singularity near polar region. EBJ 930602 Moved backwards calcs here from ls_step. EBJ 931214 Changed erroneous Latitude and Altitude variables to *lat_geod and *alt in routine ls_geoc_to_geod. EBJ 940111 Changed header files from old ls_eom.h style to ls_types, and ls_constants. Also replaced old DATA type with new SCALAR type. EBJ CURRENT RCS HEADER: $Header$ $Log$ Revision 1.1 1999/06/17 18:07:34 curt Initial revision Revision 1.1.1.1 1999/04/05 21:32:45 curt Start of 0.6.x branch. Revision 1.3 1998/07/08 14:41:37 curt . Revision 1.2 1998/01/19 18:40:25 curt Tons of little changes to clean up the code and to remove fatal errors when building with the c++ compiler. Revision 1.1 1997/05/29 00:09:56 curt Initial Flight Gear revision. * Revision 1.5 1994/01/11 18:47:05 bjax * Changed include files to use types and constants, not ls_eom.h * Also changed DATA type to SCALAR type. * * Revision 1.4 1993/12/14 21:06:47 bjax * Removed global variable references Altitude and Latitude. EBJ * * Revision 1.3 1993/06/02 15:03:40 bjax * Made new subroutine for calculating geodetic to geocentric; changed name * of forward conversion routine from ls_geodesy to ls_geoc_to_geod. * ---------------------------------------------------------------------------- REFERENCES: [ 1] Stevens, Brian L.; and Lewis, Frank L.: "Aircraft Control and Simulation", Wiley and Sons, 1992. ISBN 0-471-61397-5 ---------------------------------------------------------------------------- CALLED BY: ls_aux ---------------------------------------------------------------------------- CALLS TO: ---------------------------------------------------------------------------- INPUTS: lat_geoc Geocentric latitude, radians, + = North radius C.G. radius to earth center, ft ---------------------------------------------------------------------------- OUTPUTS: lat_geod Geodetic latitude, radians, + = North alt C.G. altitude above mean sea level, ft sea_level_r radius from earth center to sea level at local vertical (surface normal) of C.G. --------------------------------------------------------------------------*/ #include "ls_types.h" #include "ls_constants.h" #include "ls_geodesy.h" #include /* ONE_SECOND is pi/180/60/60, or about 100 feet at earths' equator */ #define ONE_SECOND 4.848136811E-6 #define HALF_PI 0.5*PI void ls_geoc_to_geod( SCALAR lat_geoc, SCALAR radius, SCALAR *lat_geod, SCALAR *alt, SCALAR *sea_level_r ) { SCALAR t_lat, x_alpha, mu_alpha, delt_mu, r_alpha, l_point, rho_alpha; SCALAR sin_mu_a, denom,delt_lambda, lambda_sl, sin_lambda_sl; if( ( (HALF_PI - lat_geoc) < ONE_SECOND ) /* near North pole */ || ( (HALF_PI + lat_geoc) < ONE_SECOND ) ) /* near South pole */ { *lat_geod = lat_geoc; *sea_level_r = EQUATORIAL_RADIUS*E; *alt = radius - *sea_level_r; } else { t_lat = tan(lat_geoc); x_alpha = E*EQUATORIAL_RADIUS/sqrt(t_lat*t_lat + E*E); mu_alpha = atan2(sqrt(RESQ - x_alpha*x_alpha),E*x_alpha); if (lat_geoc < 0) mu_alpha = - mu_alpha; sin_mu_a = sin(mu_alpha); delt_lambda = mu_alpha - lat_geoc; r_alpha = x_alpha/cos(lat_geoc); l_point = radius - r_alpha; *alt = l_point*cos(delt_lambda); denom = sqrt(1-EPS*EPS*sin_mu_a*sin_mu_a); rho_alpha = EQUATORIAL_RADIUS*(1-EPS)/ (denom*denom*denom); delt_mu = atan2(l_point*sin(delt_lambda),rho_alpha + *alt); *lat_geod = mu_alpha - delt_mu; lambda_sl = atan( E*E * tan(*lat_geod) ); /* SL geoc. latitude */ sin_lambda_sl = sin( lambda_sl ); *sea_level_r = sqrt(RESQ /(1 + ((1/(E*E))-1)*sin_lambda_sl*sin_lambda_sl)); } } void ls_geod_to_geoc( SCALAR lat_geod, SCALAR alt, SCALAR *sl_radius, SCALAR *lat_geoc ) { SCALAR lambda_sl, sin_lambda_sl, cos_lambda_sl, sin_mu, cos_mu, px, py; lambda_sl = atan( E*E * tan(lat_geod) ); /* sea level geocentric latitude */ sin_lambda_sl = sin( lambda_sl ); cos_lambda_sl = cos( lambda_sl ); sin_mu = sin(lat_geod); /* Geodetic (map makers') latitude */ cos_mu = cos(lat_geod); *sl_radius = sqrt(RESQ /(1 + ((1/(E*E))-1)*sin_lambda_sl*sin_lambda_sl)); py = *sl_radius*sin_lambda_sl + alt*sin_mu; px = *sl_radius*cos_lambda_sl + alt*cos_mu; *lat_geoc = atan2( py, px ); }