// Build a cloud layer based on metar // // Written by Harald JOHNSEN, started April 2005. // // Copyright (C) 2005 Harald JOHNSEN - hjohnsen@evc.net // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. // // #ifdef HAVE_CONFIG_H # include "config.h" #endif #include #include
#include #include #include #include #include #include #include #include #include
#include #include
#include "fgclouds.hxx" extern SGSky *thesky; FGClouds::FGClouds() : snd_lightning(0), clouds_3d_enabled(false) { update_event = 0; } FGClouds::~FGClouds() { } int FGClouds::get_update_event(void) const { return update_event; } void FGClouds::set_update_event(int count) { update_event = count; buildCloudLayers(); } void FGClouds::init(void) { if( snd_lightning == NULL ) { snd_lightning = new SGSoundSample(globals->get_fg_root().c_str(), "Sounds/thunder.wav"); snd_lightning->set_max_dist(7000.0f); snd_lightning->set_reference_dist(3000.0f); SGSoundMgr *smgr = globals->get_soundmgr(); SGSampleGroup *sgr = smgr->find("weather", true); sgr->add( snd_lightning, "thunder" ); sgEnviro.set_sampleGroup( sgr ); } } // Build an invidual cloud. Returns the extents of the cloud for coverage calculations double FGClouds::buildCloud(SGPropertyNode *cloud_def_root, SGPropertyNode *box_def_root, const string& name, double grid_z_rand, SGCloudField *layer) { SGPropertyNode *box_def=NULL; SGPropertyNode *cld_def=NULL; double extent = 0.0; SGPath texture_root = globals->get_fg_root(); texture_root.append("Textures"); texture_root.append("Sky"); box_def = box_def_root->getChild(name.c_str()); string base_name = name.substr(0,2); if( !box_def ) { if( name[2] == '-' ) { box_def = box_def_root->getChild(base_name.c_str()); } if( !box_def ) return 0.0; } double x = sg_random() * SGCloudField::fieldSize - (SGCloudField::fieldSize / 2.0); double y = sg_random() * SGCloudField::fieldSize - (SGCloudField::fieldSize / 2.0); double z = grid_z_rand * (sg_random() - 0.5); SGVec3f pos(x,y,z); for(int i = 0; i < box_def->nChildren() ; i++) { SGPropertyNode *abox = box_def->getChild(i); if( strcmp(abox->getName(), "box") == 0) { string type = abox->getStringValue("type", "cu-small"); cld_def = cloud_def_root->getChild(type.c_str()); if ( !cld_def ) return 0.0; double w = abox->getDoubleValue("width", 1000.0); double h = abox->getDoubleValue("height", 1000.0); int hdist = abox->getIntValue("hdist", 1); int vdist = abox->getIntValue("vdist", 1); double c = abox->getDoubleValue("count", 5); int count = (int) (c + (sg_random() - 0.5) * c); extent = max(w*w, extent); for (int j = 0; j < count; j++) { // Locate the clouds randomly in the defined space. The hdist and // vdist values control the horizontal and vertical distribution // by simply summing random components. double x = 0.0; double y = 0.0; double z = 0.0; for (int k = 0; k < hdist; k++) { x += (sg_random() / hdist); y += (sg_random() / hdist); } for (int k = 0; k < vdist; k++) { z += (sg_random() / vdist); } x = w * (x - 0.5) + pos[0]; // N/S y = w * (y - 0.5) + pos[1]; // E/W z = h * z + pos[2]; // Up/Down. pos[2] is the cloudbase SGVec3f newpos = SGVec3f(x, y, z); double min_width = cld_def->getDoubleValue("min-cloud-width-m", 500.0); double max_width = cld_def->getDoubleValue("max-cloud-width-m", 1000.0); double min_height = cld_def->getDoubleValue("min-cloud-height-m", min_width); double max_height = cld_def->getDoubleValue("max-cloud-height-m", max_width); double min_sprite_width = cld_def->getDoubleValue("min-sprite-width-m", 200.0); double max_sprite_width = cld_def->getDoubleValue("max-sprite-width-m", min_sprite_width); double min_sprite_height = cld_def->getDoubleValue("min-sprite-height-m", min_sprite_width); double max_sprite_height = cld_def->getDoubleValue("max-sprite-height-m", max_sprite_width); int num_sprites = cld_def->getIntValue("num-sprites", 20); int num_textures_x = cld_def->getIntValue("num-textures-x", 1); int num_textures_y = cld_def->getIntValue("num-textures-y", 1); double bottom_shade = cld_def->getDoubleValue("bottom-shade", 1.0); string texture = cld_def->getStringValue("texture", "cu.png"); SGNewCloud *cld = new SGNewCloud(type, texture_root, texture, min_width, max_width, min_height, max_height, min_sprite_width, max_sprite_width, min_sprite_height, max_sprite_height, bottom_shade, num_sprites, num_textures_x, num_textures_y); layer->addCloud(newpos, cld); } } } // Return the maximum extent of the cloud return extent; } void FGClouds::buildLayer(int iLayer, const string& name, double alt, double coverage) { struct { string name; double count; } tCloudVariety[20]; int CloudVarietyCount = 0; double totalCount = 0.0; SGPropertyNode *cloud_def_root = fgGetNode("/environment/cloudlayers/clouds", false); SGPropertyNode *box_def_root = fgGetNode("/environment/cloudlayers/boxes", false); SGPropertyNode *layer_def_root = fgGetNode("/environment/cloudlayers/layers", false); SGCloudField *layer = thesky->get_cloud_layer(iLayer)->get_layer3D(); layer->clear(); // If we don't have the required properties, then render the cloud in 2D if ((! clouds_3d_enabled) || coverage == 0.0 || layer_def_root == NULL || cloud_def_root == NULL || box_def_root == NULL) { thesky->get_cloud_layer(iLayer)->set_enable3dClouds(false); return; } // If we can't find a definition for this cloud type, then render the cloud in 2D SGPropertyNode *layer_def=NULL; layer_def = layer_def_root->getChild(name.c_str()); if( !layer_def ) { if( name[2] == '-' ) { string base_name = name.substr(0,2); layer_def = layer_def_root->getChild(base_name.c_str()); } if( !layer_def ) { thesky->get_cloud_layer(iLayer)->set_enable3dClouds(false); return; } } // At this point, we know we've got some 3D clouds to generate. thesky->get_cloud_layer(iLayer)->set_enable3dClouds(true); double grid_z_rand = layer_def->getDoubleValue("grid-z-rand"); for(int i = 0; i < layer_def->nChildren() ; i++) { SGPropertyNode *acloud = layer_def->getChild(i); if( strcmp(acloud->getName(), "cloud") == 0) { string cloud_name = acloud->getStringValue("name"); tCloudVariety[CloudVarietyCount].name = cloud_name; double count = acloud->getDoubleValue("count", 1.0); tCloudVariety[CloudVarietyCount].count = count; int variety = 0; cloud_name = cloud_name + "-%d"; char variety_name[50]; do { variety++; snprintf(variety_name, sizeof(variety_name) - 1, cloud_name.c_str(), variety); } while( box_def_root->getChild(variety_name, 0, false) ); totalCount += count; if( CloudVarietyCount < 20 ) CloudVarietyCount++; } } totalCount = 1.0 / totalCount; // Determine how much cloud coverage we need in m^2. double cov = coverage * SGCloudField::fieldSize * SGCloudField::fieldSize; while (cov > 0.0f) { double choice = sg_random(); for(int i = 0; i < CloudVarietyCount ; i ++) { choice -= tCloudVariety[i].count * totalCount; if( choice <= 0.0 ) { cov -= buildCloud(cloud_def_root, box_def_root, tCloudVariety[i].name, grid_z_rand, layer); break; } } } // Now we've built any clouds, enable them and set the density (coverage) //layer->setCoverage(coverage); //layer->applyCoverage(); thesky->get_cloud_layer(iLayer)->set_enable3dClouds(clouds_3d_enabled); } void FGClouds::buildCloudLayers(void) { SGPropertyNode *metar_root = fgGetNode("/environment", true); //double wind_speed_kt = metar_root->getDoubleValue("wind-speed-kt"); double temperature_degc = metar_root->getDoubleValue("temperature-sea-level-degc"); double dewpoint_degc = metar_root->getDoubleValue("dewpoint-sea-level-degc"); double pressure_mb = metar_root->getDoubleValue("pressure-sea-level-inhg") * SG_INHG_TO_PA / 100.0; double dewp = pow(10.0, 7.5 * dewpoint_degc / (237.7 + dewpoint_degc)); double temp = pow(10.0, 7.5 * temperature_degc / (237.7 + temperature_degc)); double rel_humidity = dewp * 100 / temp; // formule d'Epsy, base d'un cumulus double cumulus_base = 122.0 * (temperature_degc - dewpoint_degc); double stratus_base = 100.0 * (100.0 - rel_humidity) * SG_FEET_TO_METER; for(int iLayer = 0 ; iLayer < thesky->get_cloud_layer_count(); iLayer++) { SGPropertyNode *cloud_root = fgGetNode("/environment/clouds/layer", iLayer, true); double alt_ft = cloud_root->getDoubleValue("elevation-ft"); double alt_m = alt_ft * SG_FEET_TO_METER; string coverage = cloud_root->getStringValue("coverage"); double coverage_norm = 0.0; if( coverage == "few" ) coverage_norm = 2.0/8.0; // <1-2 else if( coverage == "scattered" ) coverage_norm = 4.0/8.0; // 3-4 else if( coverage == "broken" ) coverage_norm = 6.0/8.0; // 5-7 else if( coverage == "overcast" ) coverage_norm = 8.0/8.0; // 8 string layer_type = "nn"; if( coverage == "cirrus" ) { layer_type = "ci"; } else if( alt_ft > 16500 ) { // layer_type = "ci|cs|cc"; layer_type = "ci"; } else if( alt_ft > 6500 ) { // layer_type = "as|ac|ns"; layer_type = "ac"; if( pressure_mb < 1005.0 && coverage_norm >= 0.5 ) layer_type = "ns"; } else { // layer_type = "st|cu|cb|sc"; if( cumulus_base * 0.80 < alt_m && cumulus_base * 1.20 > alt_m ) { // +/- 20% from cumulus probable base layer_type = "cu"; } else if( stratus_base * 0.80 < alt_m && stratus_base * 1.40 > alt_m ) { // +/- 20% from stratus probable base layer_type = "st"; } else { // above formulae is far from perfect if ( alt_ft < 2000 ) layer_type = "st"; else if( alt_ft < 4500 ) layer_type = "cu"; else layer_type = "sc"; } } buildLayer(iLayer, layer_type, alt_m, coverage_norm); } } void FGClouds::set_3dClouds(bool enable) { if (enable != clouds_3d_enabled) { clouds_3d_enabled = enable; buildCloudLayers(); } } bool FGClouds::get_3dClouds() const { return clouds_3d_enabled; }