// replay.cxx - a system to record and replay FlightGear flights // // Written by Curtis Olson, started Juley 2003. // // Copyright (C) 2003 Curtis L. Olson - curt@flightgear.org // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. // // $Id$ #include #include #include #include #include #include "replay.hxx" /** * Constructor */ FGReplay::FGReplay() { } /** * Destructor */ FGReplay::~FGReplay() { // no dynamically allocated memory to free } /** * Initialize the data structures */ void FGReplay::init() { sim_time = 0.0; last_mt_time = 0.0; last_lt_time = 0.0; // Make sure all queues are flushed while ( !short_term.empty() ) { short_term.pop_front(); } while ( !medium_term.empty() ) { medium_term.pop_front(); } while ( !medium_term.empty() ) { medium_term.pop_front(); } } /** * Bind to the property tree */ void FGReplay::bind() { // nothing to bind } /** * Unbind from the property tree */ void FGReplay::unbind() { // nothing to unbind } /** * Update the saved data */ void FGReplay::update( double dt ) { if ( dt <= 0 ) { // don't save data if nothing is going on ... return; } sim_time += dt; // build the replay record FGNetFDM f; FGProps2NetFDM( &f, false ); FGNetCtrls c; FGProps2NetCtrls( &c, false, false ); FGReplayData r; r.sim_time = sim_time; r.ctrls = c; r.fdm = f; // update the short term list short_term.push_back( r ); FGReplayData st_front = short_term.front(); if ( sim_time - st_front.sim_time > st_list_time ) { while ( sim_time - st_front.sim_time > st_list_time ) { st_front = short_term.front(); short_term.pop_front(); } // update the medium term list if ( sim_time - last_mt_time > mt_dt ) { last_mt_time = sim_time; medium_term.push_back( st_front ); FGReplayData mt_front = medium_term.front(); if ( sim_time - mt_front.sim_time > mt_list_time ) { while ( sim_time - mt_front.sim_time > mt_list_time ) { mt_front = medium_term.front(); medium_term.pop_front(); } // update the long term list if ( sim_time - last_lt_time > lt_dt ) { last_lt_time = sim_time; long_term.push_back( mt_front ); FGReplayData lt_front = long_term.front(); if ( sim_time - lt_front.sim_time > lt_list_time ) { while ( sim_time - lt_front.sim_time > lt_list_time ) { lt_front = long_term.front(); long_term.pop_front(); } } } } } } #if 0 cout << "short term size = " << short_term.size() << " time = " << sim_time - short_term.front().sim_time << endl; cout << "medium term size = " << medium_term.size() << " time = " << sim_time - medium_term.front().sim_time << endl; cout << "long term size = " << long_term.size() << " time = " << sim_time - long_term.front().sim_time << endl; #endif } static double weight( double data1, double data2, double ratio, bool rotational = false ) { if ( rotational ) { // special handling of rotational data double tmp = data2 - data1; if ( tmp > SGD_PI ) { tmp -= SGD_2PI; } else if ( tmp < -SGD_PI ) { tmp += SGD_2PI; } return data1 + tmp * ratio; } else { // normal "linear" data return data1 + ( data2 - data1 ) * ratio; } } /** * given two FGReplayData elements and a time, interpolate between them */ static void update_fdm( FGReplayData frame ) { FGNetFDM2Props( &frame.fdm, false ); FGNetCtrls2Props( &frame.ctrls, false, false ); } /** * given two FGReplayData elements and a time, interpolate between them */ static FGReplayData interpolate( double time, FGReplayData f1, FGReplayData f2 ) { FGReplayData result = f1; FGNetFDM fdm1 = f1.fdm; FGNetFDM fdm2 = f2.fdm; double ratio = (time - f1.sim_time) / (f2.sim_time - f1.sim_time); cout << fdm1.longitude << " " << fdm2.longitude << endl; result.fdm.longitude = weight( fdm1.longitude, fdm2.longitude, ratio ); result.fdm.latitude = weight( fdm1.latitude, fdm2.latitude, ratio ); result.fdm.altitude = weight( fdm1.altitude, fdm2.altitude, ratio ); result.fdm.agl = weight( fdm1.agl, fdm2.agl, ratio ); result.fdm.phi = weight( fdm1.phi, fdm2.phi, ratio, true ); result.fdm.theta = weight( fdm1.theta, fdm2.theta, ratio, true ); result.fdm.psi = weight( fdm1.psi, fdm2.psi, ratio, true ); result.fdm.phidot = weight( fdm1.phidot, fdm2.phidot, ratio, true ); result.fdm.thetadot = weight( fdm1.thetadot, fdm2.thetadot, ratio, true ); result.fdm.psidot = weight( fdm1.psidot, fdm2.psidot, ratio, true ); result.fdm.vcas = weight( fdm1.vcas, fdm2.vcas, ratio ); result.fdm.climb_rate = weight( fdm1.climb_rate, fdm2.climb_rate, ratio ); result.fdm.v_north = weight( fdm1.v_north, fdm2.v_north, ratio ); result.fdm.v_east = weight( fdm1.v_east, fdm2.v_east, ratio ); result.fdm.v_down = weight( fdm1.v_down, fdm2.v_down, ratio ); result.fdm.v_wind_body_north = weight( fdm1.v_wind_body_north, fdm2.v_wind_body_north, ratio ); result.fdm.v_wind_body_east = weight( fdm1.v_wind_body_east, fdm2.v_wind_body_east, ratio ); result.fdm.v_wind_body_down = weight( fdm1.v_wind_body_down, fdm2.v_wind_body_down, ratio ); result.fdm.stall_warning = weight( fdm1.stall_warning, fdm2.stall_warning, ratio ); result.fdm.A_X_pilot = weight( fdm1.A_X_pilot, fdm2.A_X_pilot, ratio ); result.fdm.A_Y_pilot = weight( fdm1.A_Y_pilot, fdm2.A_Y_pilot, ratio ); result.fdm.A_Z_pilot = weight( fdm1.A_Z_pilot, fdm2.A_Z_pilot, ratio ); return result; } /** * interpolate a specific time from a specific list */ static void interpolate( double time, replay_list_type list ) { // sanity checking if ( list.size() == 0 ) { // handle empty list return; } else if ( list.size() == 1 ) { // handle list size == 1 update_fdm( list[0] ); return; } unsigned int last = list.size() - 1; unsigned int first = 0; unsigned int mid = ( last + first ) / 2; bool done = false; while ( !done ) { // cout << " " << first << " <=> " << last << endl; if ( last == first ) { done = true; } else if ( list[mid].sim_time < time && list[mid+1].sim_time < time ) { // too low first = mid; mid = ( last + first ) / 2; } else if ( list[mid].sim_time > time && list[mid+1].sim_time > time ) { // too high last = mid; mid = ( last + first ) / 2; } else { done = true; } } FGReplayData result = interpolate( time, list[mid], list[mid+1] ); update_fdm( result ); } /** * Replay a saved frame based on time, interpolate from the two * nearest saved frames. */ void FGReplay::replay( double time ) { cout << "replay: " << time << " "; // find the two frames to interpolate between double t1, t2; if ( short_term.size() > 0 ) { t1 = short_term.back().sim_time; t2 = short_term.front().sim_time; if ( time > t1 ) { // replay the most recent frame update_fdm( short_term.back() ); cout << "first frame" << endl; } else if ( time <= t1 && time >= t2 ) { interpolate( time, short_term ); cout << "from short term" << endl; } else if ( medium_term.size() > 0 ) { t1 = short_term.front().sim_time; t2 = medium_term.back().sim_time; if ( time <= t1 && time >= t2 ) { FGReplayData result = interpolate( time, medium_term.back(), short_term.front() ); update_fdm( result ); cout << "from short/medium term" << endl; } else { t1 = medium_term.back().sim_time; t2 = medium_term.front().sim_time; if ( time <= t1 && time >= t2 ) { interpolate( time, medium_term ); cout << "from medium term" << endl; } else if ( long_term.size() > 0 ) { t1 = medium_term.front().sim_time; t2 = long_term.back().sim_time; if ( time <= t1 && time >= t2 ) { FGReplayData result = interpolate( time, long_term.back(), medium_term.front()); update_fdm( result ); cout << "from medium/long term" << endl; } else { t1 = long_term.back().sim_time; t2 = long_term.front().sim_time; if ( time <= t1 && time >= t2 ) { interpolate( time, long_term ); cout << "from long term" << endl; } else { // replay the oldest long term frame update_fdm( long_term.front() ); cout << "oldest long term frame" << endl; } } } else { // replay the oldest medium term frame update_fdm( medium_term.front() ); cout << "oldest medium term frame" << endl; } } } else { // replay the oldest short term frame update_fdm( short_term.front() ); cout << "oldest short term frame" << endl; } } else { // nothing to replay } } double FGReplay::get_start_time() { if ( long_term.size() > 0 ) { return long_term.front().sim_time; } else if ( medium_term.size() > 0 ) { return medium_term.front().sim_time; } else if ( short_term.size() ) { return short_term.front().sim_time; } else { return 0.0; } } double FGReplay::get_end_time() { if ( short_term.size() ) { return short_term.back().sim_time; } else { return 0.0; } }