/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Module: FGFCS.cpp Author: Jon Berndt Date started: 12/12/98 Purpose: Model the flight controls Called by: FDMExec ------------- Copyright (C) 1999 Jon S. Berndt (jsb@hal-pc.org) ------------- This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. Further information about the GNU General Public License can also be found on the world wide web at http://www.gnu.org. FUNCTIONAL DESCRIPTION -------------------------------------------------------------------------------- This class models the flight controls for a specific airplane HISTORY -------------------------------------------------------------------------------- 12/12/98 JSB Created %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% INCLUDES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ #include "FGFCS.h" #include "FGState.h" #include "FGFDMExec.h" #include "FGAtmosphere.h" #include "FGAircraft.h" #include "FGTranslation.h" #include "FGRotation.h" #include "FGPosition.h" #include "FGAuxiliary.h" #include "FGOutput.h" #include "filtersjb/FGFilter.h" #include "filtersjb/FGDeadBand.h" #include "filtersjb/FGGain.h" #include "filtersjb/FGGradient.h" #include "filtersjb/FGSwitch.h" #include "filtersjb/FGSummer.h" #include "filtersjb/FGKinemat.h" static const char *IdSrc = "$Id$"; static const char *IdHdr = ID_FCS; /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% CLASS IMPLEMENTATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ FGFCS::FGFCS(FGFDMExec* fdmex) : FGModel(fdmex) { Name = "FGFCS"; DaCmd = DeCmd = DrCmd = DfCmd = DsbCmd = DspCmd = 0.0; PTrimCmd = YTrimCmd = RTrimCmd = 0.0; DaPos = DePos = DrPos = DfPos = DsbPos = DspPos = 0.0; GearCmd = GearPos = 1; // default to gear down LeftBrake = RightBrake = CenterBrake = 0.0; Debug(0); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FGFCS::~FGFCS() { ThrottleCmd.clear(); ThrottlePos.clear(); MixtureCmd.clear(); MixturePos.clear(); PropAdvanceCmd.clear(); PropAdvance.clear(); unsigned int i; for (i=0;iRun(); } else { } return false; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void FGFCS::SetThrottleCmd(int engineNum, double setting) { unsigned int ctr; if (engineNum < (int)ThrottlePos.size()) { if (engineNum < 0) { for (ctr=0;ctrGetValue("NAME"); if (debug_lvl > 0) cout << " Control System Name: " << Name << endl; AC_cfg->GetNextConfigLine(); while ((token = AC_cfg->GetValue()) != string("/FLIGHT_CONTROL")) { if (token == "COMPONENT") { token = AC_cfg->GetValue("TYPE"); if (debug_lvl > 0) cout << endl << " Loading Component \"" << AC_cfg->GetValue("NAME") << "\" of type: " << token << endl; if ((token == "LAG_FILTER") || (token == "LEAD_LAG_FILTER") || (token == "SECOND_ORDER_FILTER") || (token == "WASHOUT_FILTER") || (token == "INTEGRATOR") ) { Components.push_back(new FGFilter(this, AC_cfg)); } else if ((token == "PURE_GAIN") || (token == "SCHEDULED_GAIN") || (token == "AEROSURFACE_SCALE") ) { Components.push_back(new FGGain(this, AC_cfg)); } else if (token == "SUMMER") { Components.push_back(new FGSummer(this, AC_cfg)); } else if (token == "DEADBAND") { Components.push_back(new FGDeadBand(this, AC_cfg)); } else if (token == "GRADIENT") { Components.push_back(new FGGradient(this, AC_cfg)); } else if (token == "SWITCH") { Components.push_back(new FGSwitch(this, AC_cfg)); } else if (token == "KINEMAT") { Components.push_back(new FGKinemat(this, AC_cfg)); } else { cerr << "Unknown token [" << token << "] in FCS portion of config file" << endl; return false; } AC_cfg->GetNextConfigLine(); } } return true; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% double FGFCS::GetComponentOutput(eParam idx) { return Components[idx]->GetOutput(); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% string FGFCS::GetComponentName(int idx) { return Components[idx]->GetName(); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% double FGFCS::GetBrake(FGLGear::BrakeGroup bg) { switch (bg) { case FGLGear::bgLeft: return LeftBrake; case FGLGear::bgRight: return RightBrake; case FGLGear::bgCenter: return CenterBrake; default: cerr << "GetBrake asked to return a bogus brake value" << endl; } return 0.0; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% string FGFCS::GetComponentStrings(void) { unsigned int comp; string CompStrings = ""; bool firstime = true; for (comp = 0; comp < Components.size(); comp++) { if (firstime) firstime = false; else CompStrings += ", "; CompStrings += Components[comp]->GetName(); } return CompStrings; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% string FGFCS::GetComponentValues(void) { unsigned int comp; string CompValues = ""; char buffer[10]; bool firstime = true; for (comp = 0; comp < Components.size(); comp++) { if (firstime) firstime = false; else CompValues += ", "; sprintf(buffer, "%9.6f", Components[comp]->GetOutput()); CompValues += string(buffer); } return CompValues; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void FGFCS::AddThrottle(void) { ThrottleCmd.push_back(0.0); ThrottlePos.push_back(0.0); MixtureCmd.push_back(0.0); // assume throttle and mixture are coupled MixturePos.push_back(0.0); PropAdvanceCmd.push_back(0.0); // assume throttle and prop pitch are coupled PropAdvance.push_back(0.0); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // The bitmasked value choices are as follows: // unset: In this case (the default) JSBSim would only print // out the normally expected messages, essentially echoing // the config files as they are read. If the environment // variable is not set, debug_lvl is set to 1 internally // 0: This requests JSBSim not to output any messages // whatsoever. // 1: This value explicity requests the normal JSBSim // startup messages // 2: This value asks for a message to be printed out when // a class is instantiated // 4: When this value is set, a message is displayed when a // FGModel object executes its Run() method // 8: When this value is set, various runtime state variables // are printed out periodically // 16: When set various parameters are sanity checked and // a message is printed out when they go out of bounds void FGFCS::Debug(int from) { if (debug_lvl <= 0) return; if (debug_lvl & 1) { // Standard console startup message output if (from == 0) { // Constructor } } if (debug_lvl & 2 ) { // Instantiation/Destruction notification if (from == 0) cout << "Instantiated: FGFCS" << endl; if (from == 1) cout << "Destroyed: FGFCS" << endl; } if (debug_lvl & 4 ) { // Run() method entry print for FGModel-derived objects } if (debug_lvl & 8 ) { // Runtime state variables } if (debug_lvl & 16) { // Sanity checking } if (debug_lvl & 64) { if (from == 0) { // Constructor cout << IdSrc << endl; cout << IdHdr << endl; } } }