// viewer.cxx -- class for managing a viewer in the flightgear world. // // Written by Curtis Olson, started August 1997. // overhaul started October 2000. // partially rewritten by Jim Wilson jim@kelcomaine.com using interface // by David Megginson March 2002 // // Copyright (C) 1997 - 2000 Curtis L. Olson - curt@flightgear.org // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. // // $Id$ #include #ifdef HAVE_CONFIG_H # include #endif #include #include #include #include #include #include /* from lookat */ #include #include "globals.hxx" /* end from lookat */ #include "viewer.hxx" ////////////////////////////////////////////////////////////////// // Norman's Optimized matrix rotators! // ////////////////////////////////////////////////////////////////// static void fgMakeLOCAL( sgMat4 dst, const double Theta, const double Phi, const double Psi) { SGfloat cosTheta = (SGfloat) cos(Theta); SGfloat sinTheta = (SGfloat) sin(Theta); SGfloat cosPhi = (SGfloat) cos(Phi); SGfloat sinPhi = (SGfloat) sin(Phi); SGfloat sinPsi = (SGfloat) sin(Psi) ; SGfloat cosPsi = (SGfloat) cos(Psi) ; dst[0][0] = cosPhi * cosTheta; dst[0][1] = sinPhi * cosPsi + cosPhi * -sinTheta * -sinPsi; dst[0][2] = sinPhi * sinPsi + cosPhi * -sinTheta * cosPsi; dst[0][3] = SG_ZERO; dst[1][0] = -sinPhi * cosTheta; dst[1][1] = cosPhi * cosPsi + -sinPhi * -sinTheta * -sinPsi; dst[1][2] = cosPhi * sinPsi + -sinPhi * -sinTheta * cosPsi; dst[1][3] = SG_ZERO ; dst[2][0] = sinTheta; dst[2][1] = cosTheta * -sinPsi; dst[2][2] = cosTheta * cosPsi; dst[2][3] = SG_ZERO; dst[3][0] = SG_ZERO; dst[3][1] = SG_ZERO; dst[3][2] = SG_ZERO; dst[3][3] = SG_ONE ; } // Since these are pure rotation matrices we can save some bookwork // by considering them to be 3x3 until the very end -- NHV static void MakeVIEW_OFFSET( sgMat4 dst, const float angle1, const sgVec3 axis1, const float angle2, const sgVec3 axis2 ) { // make rotmatrix1 from angle and axis float s = (float) sin ( angle1 ) ; float c = (float) cos ( angle1 ) ; float t = SG_ONE - c ; sgMat3 mat1; float tmp = t * axis1[0]; mat1[0][0] = tmp * axis1[0] + c ; mat1[0][1] = tmp * axis1[1] + s * axis1[2] ; mat1[0][2] = tmp * axis1[2] - s * axis1[1] ; tmp = t * axis1[1]; mat1[1][0] = tmp * axis1[0] - s * axis1[2] ; mat1[1][1] = tmp * axis1[1] + c ; mat1[1][2] = tmp * axis1[2] + s * axis1[0] ; tmp = t * axis1[2]; mat1[2][0] = tmp * axis1[0] + s * axis1[1] ; mat1[2][1] = tmp * axis1[1] - s * axis1[0] ; mat1[2][2] = tmp * axis1[2] + c ; // make rotmatrix2 from angle and axis s = (float) sin ( angle2 ) ; c = (float) cos ( angle2 ) ; t = SG_ONE - c ; sgMat3 mat2; tmp = t * axis2[0]; mat2[0][0] = tmp * axis2[0] + c ; mat2[0][1] = tmp * axis2[1] + s * axis2[2] ; mat2[0][2] = tmp * axis2[2] - s * axis2[1] ; tmp = t * axis2[1]; mat2[1][0] = tmp * axis2[0] - s * axis2[2] ; mat2[1][1] = tmp * axis2[1] + c ; mat2[1][2] = tmp * axis2[2] + s * axis2[0] ; tmp = t * axis2[2]; mat2[2][0] = tmp * axis2[0] + s * axis2[1] ; mat2[2][1] = tmp * axis2[1] - s * axis2[0] ; mat2[2][2] = tmp * axis2[2] + c ; // multiply matrices for ( int j = 0 ; j < 3 ; j++ ) { dst[0][j] = mat2[0][0] * mat1[0][j] + mat2[0][1] * mat1[1][j] + mat2[0][2] * mat1[2][j]; dst[1][j] = mat2[1][0] * mat1[0][j] + mat2[1][1] * mat1[1][j] + mat2[1][2] * mat1[2][j]; dst[2][j] = mat2[2][0] * mat1[0][j] + mat2[2][1] * mat1[1][j] + mat2[2][2] * mat1[2][j]; } // fill in 4x4 matrix elements dst[0][3] = SG_ZERO; dst[1][3] = SG_ZERO; dst[2][3] = SG_ZERO; dst[3][0] = SG_ZERO; dst[3][1] = SG_ZERO; dst[3][2] = SG_ZERO; dst[3][3] = SG_ONE; } // Taking advantage of the 3x3 nature of this -- NHV inline static void MakeWithWorldUp( sgMat4 dst, const sgMat4 UP, const sgMat4 LOCAL ) { sgMat4 tmp; float a = UP[0][0]; float b = UP[1][0]; float c = UP[2][0]; tmp[0][0] = a*LOCAL[0][0] + b*LOCAL[0][1] + c*LOCAL[0][2] ; tmp[1][0] = a*LOCAL[1][0] + b*LOCAL[1][1] + c*LOCAL[1][2] ; tmp[2][0] = a*LOCAL[2][0] + b*LOCAL[2][1] + c*LOCAL[2][2] ; tmp[3][0] = SG_ZERO ; a = UP[0][1]; b = UP[1][1]; c = UP[2][1]; tmp[0][1] = a*LOCAL[0][0] + b*LOCAL[0][1] + c*LOCAL[0][2] ; tmp[1][1] = a*LOCAL[1][0] + b*LOCAL[1][1] + c*LOCAL[1][2] ; tmp[2][1] = a*LOCAL[2][0] + b*LOCAL[2][1] + c*LOCAL[2][2] ; tmp[3][1] = SG_ZERO ; a = UP[0][2]; c = UP[2][2]; tmp[0][2] = a*LOCAL[0][0] + c*LOCAL[0][2] ; tmp[1][2] = a*LOCAL[1][0] + c*LOCAL[1][2] ; tmp[2][2] = a*LOCAL[2][0] + c*LOCAL[2][2] ; tmp[3][2] = SG_ZERO ; tmp[0][3] = SG_ZERO ; tmp[1][3] = SG_ZERO ; tmp[2][3] = SG_ZERO ; tmp[3][3] = SG_ONE ; sgCopyMat4(dst, tmp); } //////////////////////////////////////////////////////////////////////// // Implementation of FGViewer. //////////////////////////////////////////////////////////////////////// // Constructor FGViewer::FGViewer( void ): _scaling_type(FG_SCALING_MAX), _fov_deg(55.0), _dirty(true), _lon_deg(0), _lat_deg(0), _alt_ft(0), _target_lon_deg(0), _target_lat_deg(0), _target_alt_ft(0), _roll_deg(0), _pitch_deg(0), _heading_deg(0), _x_offset_m(0), _y_offset_m(0), _z_offset_m(0), _heading_offset_deg(0), _pitch_offset_deg(0), _roll_offset_deg(0), _goal_heading_offset_deg(0.0), _goal_pitch_offset_deg(0.0) { sgdZeroVec3(_absolute_view_pos); //a reasonable guess for init, so that the math doesn't blow up } // Destructor FGViewer::~FGViewer( void ) { } void FGViewer::init () { } void FGViewer::bind () { } void FGViewer::unbind () { } void FGViewer::setType ( int type ) { if (type == 0) _type = FG_RPH; if (type == 1) _type = FG_LOOKAT; } void FGViewer::setLongitude_deg (double lon_deg) { _dirty = true; _lon_deg = lon_deg; } void FGViewer::setLatitude_deg (double lat_deg) { _dirty = true; _lat_deg = lat_deg; } void FGViewer::setAltitude_ft (double alt_ft) { _dirty = true; _alt_ft = alt_ft; } void FGViewer::setPosition (double lon_deg, double lat_deg, double alt_ft) { _dirty = true; _lon_deg = lon_deg; _lat_deg = lat_deg; _alt_ft = alt_ft; } void FGViewer::setTargetLongitude_deg (double lon_deg) { _dirty = true; _target_lon_deg = lon_deg; } void FGViewer::setTargetLatitude_deg (double lat_deg) { _dirty = true; _target_lat_deg = lat_deg; } void FGViewer::setTargetAltitude_ft (double alt_ft) { _dirty = true; _target_alt_ft = alt_ft; } void FGViewer::setTargetPosition (double lon_deg, double lat_deg, double alt_ft) { _dirty = true; _target_lon_deg = lon_deg; _target_lat_deg = lat_deg; _target_alt_ft = alt_ft; } void FGViewer::setRoll_deg (double roll_deg) { _dirty = true; _roll_deg = roll_deg; } void FGViewer::setPitch_deg (double pitch_deg) { _dirty = true; _pitch_deg = pitch_deg; } void FGViewer::setHeading_deg (double heading_deg) { _dirty = true; _heading_deg = heading_deg; } void FGViewer::setOrientation (double roll_deg, double pitch_deg, double heading_deg) { _dirty = true; _roll_deg = roll_deg; _pitch_deg = pitch_deg; _heading_deg = heading_deg; } void FGViewer::setXOffset_m (double x_offset_m) { _dirty = true; _x_offset_m = x_offset_m; } void FGViewer::setYOffset_m (double y_offset_m) { _dirty = true; _y_offset_m = y_offset_m; } void FGViewer::setZOffset_m (double z_offset_m) { _dirty = true; _z_offset_m = z_offset_m; } void FGViewer::setPositionOffsets (double x_offset_m, double y_offset_m, double z_offset_m) { _dirty = true; _x_offset_m = x_offset_m; _y_offset_m = y_offset_m; _z_offset_m = z_offset_m; } void FGViewer::setRollOffset_deg (double roll_offset_deg) { _dirty = true; _roll_offset_deg = roll_offset_deg; } void FGViewer::setPitchOffset_deg (double pitch_offset_deg) { _dirty = true; _pitch_offset_deg = pitch_offset_deg; } void FGViewer::setHeadingOffset_deg (double heading_offset_deg) { _dirty = true; _heading_offset_deg = heading_offset_deg; } void FGViewer::setGoalRollOffset_deg (double goal_roll_offset_deg) { _dirty = true; _goal_roll_offset_deg = goal_roll_offset_deg; } void FGViewer::setGoalPitchOffset_deg (double goal_pitch_offset_deg) { _dirty = true; _goal_pitch_offset_deg = goal_pitch_offset_deg; if ( _goal_pitch_offset_deg < -90 ) { _goal_pitch_offset_deg = -90.0; } if ( _goal_pitch_offset_deg > 90.0 ) { _goal_pitch_offset_deg = 90.0; } } void FGViewer::setGoalHeadingOffset_deg (double goal_heading_offset_deg) { _dirty = true; _goal_heading_offset_deg = goal_heading_offset_deg; while ( _goal_heading_offset_deg < 0.0 ) { _goal_heading_offset_deg += 360; } while ( _goal_heading_offset_deg > 360 ) { _goal_heading_offset_deg -= 360; } } void FGViewer::setOrientationOffsets (double roll_offset_deg, double pitch_offset_deg, double heading_offset_deg) { _dirty = true; _roll_offset_deg = roll_offset_deg; _pitch_offset_deg = pitch_offset_deg; _heading_offset_deg = heading_offset_deg; } double * FGViewer::get_absolute_view_pos () { if (_dirty) recalc(); return _absolute_view_pos; } float * FGViewer::getRelativeViewPos () { if (_dirty) recalc(); return _relative_view_pos; } float * FGViewer::getZeroElevViewPos () { if (_dirty) recalc(); return _zero_elev_view_pos; } // recalc() is done every time one of the setters is called (making the // cached data "dirty") on the next "get". It calculates all the outputs // for viewer. void FGViewer::recalc () { sgVec3 minus_z, right, forward, tilt; sgMat4 tmpROT; // temp rotation work matrices sgMat4 VIEW_HEADINGOFFSET, VIEW_PITCHOFFSET; sgVec3 tmpVec3; // temp work vector (3) // The position vectors originate from the view point or target location // depending on the type of view. // FIXME: In particular this routine will need to support both locations // and chase view (aka lookat) is only unique in that the // eye position is calculated in relation to the object's position. // FIXME: Later note: actually the object (target) info needs to be held // by the model class. if (_type == FG_RPH) { // position is the location of the pilot recalcPositionVectors( _lon_deg, _lat_deg, _alt_ft ); // Make the world up rotation matrix for rph sgMakeRotMat4( UP, _lon_deg, 0.0, -_lat_deg ); } else { // position is the location of the object being looked at recalcPositionVectors( _target_lon_deg, _target_lat_deg, _target_alt_ft ); // Make the world up rotation matrix for lookat sgMakeRotMat4( UP, _target_lon_deg, 0.0, -_target_lat_deg ); } // the coordinates generated by the above "recalcPositionVectors" sgCopyVec3(_zero_elev, _zero_elev_view_pos); sgCopyVec3(_view_pos, _relative_view_pos); // get the world up radial vector from planet center // (ie. effect of aircraft location on earth "sphere" approximation) sgSetVec3( _world_up, UP[0][0], UP[0][1], UP[0][2] ); // Creat local matrix with current geodetic position. Converting // the orientation (pitch/roll/heading) to vectors. fgMakeLOCAL( LOCAL, _pitch_deg * SG_DEGREES_TO_RADIANS, _roll_deg * SG_DEGREES_TO_RADIANS, -_heading_deg * SG_DEGREES_TO_RADIANS); // Adjust LOCAL to current world_up vector (adjustment for planet location) MakeWithWorldUp( LOCAL, UP, LOCAL ); // copy the LOCAL matrix to COCKPIT_ROT for publication... sgCopyMat4( LOCAL_ROT, LOCAL ); // make sg vectors view up, right and forward vectors from LOCAL sgSetVec3( _view_up, LOCAL[0][0], LOCAL[0][1], LOCAL[0][2] ); sgSetVec3( right, LOCAL[1][0], LOCAL[1][1], LOCAL[1][2] ); sgSetVec3( forward, LOCAL[2][0], LOCAL[2][1], LOCAL[2][2] ); // create xyz offsets Vector sgVec3 position_offset; sgSetVec3( position_offset, _y_offset_m, _x_offset_m, _z_offset_m ); // Eye rotations. // Looking up/down left/right in pilot view (lookfrom mode) // or Floating Rotatation around the object in chase view (lookat mode). // Generate the offset matrix to be applied using offset angles: if (_type == FG_LOOKAT) { // Note that when in "chase view" the offset is in relation to the // orientation heading (_heading_deg) of the model being looked at as // it is used to rotate around the model. MakeVIEW_OFFSET( VIEW_OFFSET, (_heading_offset_deg - _heading_deg) * SG_DEGREES_TO_RADIANS, _world_up, _pitch_offset_deg * SG_DEGREES_TO_RADIANS, right ); } if (_type == FG_RPH) { // generate the view offset matrix using orientation offsets MakeVIEW_OFFSET( VIEW_OFFSET, _heading_offset_deg * SG_DEGREES_TO_RADIANS, _view_up, _pitch_offset_deg * SG_DEGREES_TO_RADIANS, right ); } if (_type == FG_LOOKAT) { // transfrom "offset" and "orientation offset" to vector sgXformVec3( position_offset, position_offset, UP ); sgXformVec3( position_offset, position_offset, VIEW_OFFSET ); sgVec3 object_pos, eye_pos; // copy to coordinates to object... sgCopyVec3( object_pos, _view_pos ); // add the offsets from object to the coordinates to get "eye" sgAddVec3( eye_pos, _view_pos, position_offset ); // Make the VIEW matrix for "lookat". sgMakeLookAtMat4( VIEW, eye_pos, object_pos, _view_up ); } if (_type == FG_RPH) { sgXformVec3( position_offset, position_offset, LOCAL); // add the offsets including rotations to the coordinates sgAddVec3( _view_pos, position_offset ); // Make the VIEW matrix. VIEW[0][0] = right[0]; VIEW[0][1] = right[1]; VIEW[0][2] = right[2]; VIEW[0][3] = 0.0; VIEW[1][0] = forward[0]; VIEW[1][1] = forward[1]; VIEW[1][2] = forward[2]; VIEW[1][3] = 0.0; VIEW[2][0] = _view_up[0]; VIEW[2][1] = _view_up[1]; VIEW[2][2] = _view_up[2]; VIEW[2][3] = 0.0; VIEW[3][0] = 0.0; VIEW[3][1] = 0.0; VIEW[3][2] = 0.0; VIEW[3][3] = 0.0; // multiply the OFFSETS (for heading and pitch) into the VIEW sgPostMultMat4(VIEW, VIEW_OFFSET); // add the position data to the matrix VIEW[3][0] = _view_pos[0]; VIEW[3][1] = _view_pos[1]; VIEW[3][2] = _view_pos[2]; VIEW[3][3] = 1.0f; } // the VIEW matrix includes both rotation and translation. Let's // knock out the translation part to make the VIEW_ROT matrix sgCopyMat4( VIEW_ROT, VIEW ); VIEW_ROT[3][0] = VIEW_ROT[3][1] = VIEW_ROT[3][2] = 0.0; // Given a vector pointing straight down (-Z), map into onto the // local plane representing "horizontal". This should give us the // local direction for moving "south". sgSetVec3( minus_z, 0.0, 0.0, -1.0 ); sgmap_vec_onto_cur_surface_plane(_world_up, _view_pos, minus_z, _surface_south); sgNormalizeVec3(_surface_south); // now calculate the surface east vector sgVec3 world_down; sgNegateVec3(world_down, _world_up); sgVectorProductVec3(_surface_east, _surface_south, world_down); set_clean(); } void FGViewer::recalcPositionVectors (double lon_deg, double lat_deg, double alt_ft) const { double sea_level_radius_m; double lat_geoc_rad; // Convert from geodetic to geocentric // coordinates. sgGeodToGeoc(lat_deg * SGD_DEGREES_TO_RADIANS, alt_ft * SG_FEET_TO_METER, &sea_level_radius_m, &lat_geoc_rad); // Calculate the cartesian coordinates // of point directly below at sea level. // aka Zero Elevation Position Point3D p = Point3D(lon_deg * SG_DEGREES_TO_RADIANS, lat_geoc_rad, sea_level_radius_m); Point3D tmp = sgPolarToCart3d(p) - scenery.get_next_center(); sgSetVec3(_zero_elev_view_pos, tmp[0], tmp[1], tmp[2]); // Calculate the absolute view position // in fgfs coordinates. // aka Absolute View Position p.setz(p.radius() + alt_ft * SG_FEET_TO_METER); tmp = sgPolarToCart3d(p); sgdSetVec3(_absolute_view_pos, tmp[0], tmp[1], tmp[2]); // Calculate the relative view position // from the scenery center. // aka Relative View Position sgdVec3 scenery_center; sgdSetVec3(scenery_center, scenery.get_next_center().x(), scenery.get_next_center().y(), scenery.get_next_center().z()); sgdVec3 view_pos; sgdSubVec3(view_pos, _absolute_view_pos, scenery_center); sgSetVec3(_relative_view_pos, view_pos); } double FGViewer::get_h_fov() { switch (_scaling_type) { case FG_SCALING_WIDTH: // h_fov == fov return _fov_deg; case FG_SCALING_MAX: if (_aspect_ratio < 1.0) { // h_fov == fov return _fov_deg; } else { // v_fov == fov return atan(tan(_fov_deg/2 * SG_DEGREES_TO_RADIANS) / _aspect_ratio) * SG_RADIANS_TO_DEGREES * 2; } default: assert(false); } } double FGViewer::get_v_fov() { switch (_scaling_type) { case FG_SCALING_WIDTH: // h_fov == fov return atan(tan(_fov_deg/2 * SG_DEGREES_TO_RADIANS) * _aspect_ratio) * SG_RADIANS_TO_DEGREES * 2; case FG_SCALING_MAX: if (_aspect_ratio < 1.0) { // h_fov == fov return atan(tan(_fov_deg/2 * SG_DEGREES_TO_RADIANS) * _aspect_ratio) * SG_RADIANS_TO_DEGREES * 2; } else { // v_fov == fov return _fov_deg; } default: assert(false); } } void FGViewer::update (int dt) { int i; for ( i = 0; i < dt; i++ ) { if ( fabs( _goal_heading_offset_deg - _heading_offset_deg) < 1 ) { setHeadingOffset_deg( _goal_heading_offset_deg ); break; } else { // move current_view.headingoffset towards // current_view.goal_view_offset if ( _goal_heading_offset_deg > _heading_offset_deg ) { if ( _goal_heading_offset_deg - _heading_offset_deg < 180 ){ incHeadingOffset_deg( 0.5 ); } else { incHeadingOffset_deg( -0.5 ); } } else { if ( _heading_offset_deg - _goal_heading_offset_deg < 180 ){ incHeadingOffset_deg( -0.5 ); } else { incHeadingOffset_deg( 0.5 ); } } if ( _heading_offset_deg > 360 ) { incHeadingOffset_deg( -360 ); } else if ( _heading_offset_deg < 0 ) { incHeadingOffset_deg( 360 ); } } } for ( i = 0; i < dt; i++ ) { if ( fabs( _goal_pitch_offset_deg - _pitch_offset_deg ) < 1 ) { setPitchOffset_deg( _goal_pitch_offset_deg ); break; } else { // move current_view.pitch_offset_deg towards // current_view.goal_pitch_offset if ( _goal_pitch_offset_deg > _pitch_offset_deg ) { incPitchOffset_deg( 1.0 ); } else { incPitchOffset_deg( -1.0 ); } if ( _pitch_offset_deg > 90 ) { setPitchOffset_deg(90); } else if ( _pitch_offset_deg < -90 ) { setPitchOffset_deg( -90 ); } } } }