/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Header: FGTrimAxis.cpp Author: Tony Peden Date started: 7/3/00 --------- Copyright (C) 1999 Anthony K. Peden (apeden@earthlink.net) --------- This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. Further information about the GNU General Public License can also be found on the world wide web at http://www.gnu.org. HISTORY -------------------------------------------------------------------------------- 7/3/00 TP Created %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% INCLUDES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ #ifdef _MSC_VER # pragma warning (disable : 4786) #endif #include #include #include "FGFDMExec.h" #include "FGAtmosphere.h" #include "FGInitialCondition.h" #include "FGTrimAxis.h" #include "FGAircraft.h" #include "FGPropulsion.h" #include "FGAerodynamics.h" namespace JSBSim { static const char *IdSrc = "$Id$"; static const char *IdHdr = ID_TRIMAXIS; /*****************************************************************************/ FGTrimAxis::FGTrimAxis(FGFDMExec* fdex, FGInitialCondition* ic, State st, Control ctrl) { fdmex=fdex; fgic=ic; state=st; control=ctrl; max_iterations=10; control_value=0; its_to_stable_value=0; total_iterations=0; total_stability_iterations=0; state_convert=1.0; control_convert=1.0; state_value=0; state_target=0; switch(state) { case tUdot: tolerance = DEFAULT_TOLERANCE; break; case tVdot: tolerance = DEFAULT_TOLERANCE; break; case tWdot: tolerance = DEFAULT_TOLERANCE; break; case tQdot: tolerance = DEFAULT_TOLERANCE / 10; break; case tPdot: tolerance = DEFAULT_TOLERANCE / 10; break; case tRdot: tolerance = DEFAULT_TOLERANCE / 10; break; case tHmgt: tolerance = 0.01; break; case tNlf: state_target=1.0; tolerance = 1E-5; break; case tAll: break; } solver_eps=tolerance; switch(control) { case tThrottle: control_min=0; control_max=1; control_value=0.5; break; case tBeta: control_min=-30*degtorad; control_max=30*degtorad; control_convert=radtodeg; break; case tAlpha: control_min=fdmex->GetAerodynamics()->GetAlphaCLMin(); control_max=fdmex->GetAerodynamics()->GetAlphaCLMax(); if(control_max <= control_min) { control_max=20*degtorad; control_min=-5*degtorad; } control_value= (control_min+control_max)/2; control_convert=radtodeg; solver_eps=tolerance/100; break; case tPitchTrim: case tElevator: case tRollTrim: case tAileron: case tYawTrim: case tRudder: control_min=-1; control_max=1; state_convert=radtodeg; solver_eps=tolerance/100; break; case tAltAGL: control_min=0; control_max=30; control_value=fdmex->GetPropagate()->GetDistanceAGL(); solver_eps=tolerance/100; break; case tTheta: control_min=fdmex->GetPropagate()->GetEuler(eTht) - 5*degtorad; control_max=fdmex->GetPropagate()->GetEuler(eTht) + 5*degtorad; state_convert=radtodeg; break; case tPhi: control_min=fdmex->GetPropagate()->GetEuler(ePhi) - 30*degtorad; control_max=fdmex->GetPropagate()->GetEuler(ePhi) + 30*degtorad; state_convert=radtodeg; control_convert=radtodeg; break; case tGamma: solver_eps=tolerance/100; control_min=-80*degtorad; control_max=80*degtorad; control_convert=radtodeg; break; case tHeading: control_min=fdmex->GetPropagate()->GetEuler(ePsi) - 30*degtorad; control_max=fdmex->GetPropagate()->GetEuler(ePsi) + 30*degtorad; state_convert=radtodeg; break; } Debug(0); } /*****************************************************************************/ FGTrimAxis::~FGTrimAxis(void) { Debug(1); } /*****************************************************************************/ void FGTrimAxis::getState(void) { switch(state) { case tUdot: state_value=fdmex->GetPropagate()->GetUVWdot(1)-state_target; break; case tVdot: state_value=fdmex->GetPropagate()->GetUVWdot(2)-state_target; break; case tWdot: state_value=fdmex->GetPropagate()->GetUVWdot(3)-state_target; break; case tQdot: state_value=fdmex->GetPropagate()->GetPQRdot(2)-state_target;break; case tPdot: state_value=fdmex->GetPropagate()->GetPQRdot(1)-state_target; break; case tRdot: state_value=fdmex->GetPropagate()->GetPQRdot(3)-state_target; break; case tHmgt: state_value=computeHmgt()-state_target; break; case tNlf: state_value=fdmex->GetAircraft()->GetNlf()-state_target; break; case tAll: break; } } /*****************************************************************************/ //States are not settable void FGTrimAxis::getControl(void) { switch(control) { case tThrottle: control_value=fdmex->GetFCS()->GetThrottleCmd(0); break; case tBeta: control_value=fdmex->GetAuxiliary()->Getalpha(); break; case tAlpha: control_value=fdmex->GetAuxiliary()->Getbeta(); break; case tPitchTrim: control_value=fdmex->GetFCS() -> GetPitchTrimCmd(); break; case tElevator: control_value=fdmex->GetFCS() -> GetDeCmd(); break; case tRollTrim: case tAileron: control_value=fdmex->GetFCS() -> GetDaCmd(); break; case tYawTrim: case tRudder: control_value=fdmex->GetFCS() -> GetDrCmd(); break; case tAltAGL: control_value=fdmex->GetPropagate()->GetDistanceAGL();break; case tTheta: control_value=fdmex->GetPropagate()->GetEuler(eTht); break; case tPhi: control_value=fdmex->GetPropagate()->GetEuler(ePhi); break; case tGamma: control_value=fdmex->GetAuxiliary()->GetGamma();break; case tHeading: control_value=fdmex->GetPropagate()->GetEuler(ePsi); break; } } /*****************************************************************************/ double FGTrimAxis::computeHmgt(void) { double diff; diff = fdmex->GetPropagate()->GetEuler(ePsi) - fdmex->GetAuxiliary()->GetGroundTrack(); if( diff < -M_PI ) { return (diff + 2*M_PI); } else if( diff > M_PI ) { return (diff - 2*M_PI); } else { return diff; } } /*****************************************************************************/ void FGTrimAxis::setControl(void) { switch(control) { case tThrottle: setThrottlesPct(); break; case tBeta: fgic->SetBetaRadIC(control_value); break; case tAlpha: fgic->SetAlphaRadIC(control_value); break; case tPitchTrim: fdmex->GetFCS()->SetPitchTrimCmd(control_value); break; case tElevator: fdmex->GetFCS()->SetDeCmd(control_value); break; case tRollTrim: case tAileron: fdmex->GetFCS()->SetDaCmd(control_value); break; case tYawTrim: case tRudder: fdmex->GetFCS()->SetDrCmd(control_value); break; case tAltAGL: fgic->SetAltitudeAGLFtIC(control_value); break; case tTheta: fgic->SetPitchAngleRadIC(control_value); break; case tPhi: fgic->SetRollAngleRadIC(control_value); break; case tGamma: fgic->SetFlightPathAngleRadIC(control_value); break; case tHeading: fgic->SetTrueHeadingRadIC(control_value); break; } } /*****************************************************************************/ // the aircraft center of rotation is no longer the cg once the gear // contact the ground so the altitude needs to be changed when pitch // and roll angle are adjusted. Instead of attempting to calculate the // new center of rotation, pick a gear unit as a reference and use its // location vector to calculate the new height change. i.e. new altitude = // earth z component of that vector (which is in body axes ) void FGTrimAxis::SetThetaOnGround(double ff) { int center,i,ref; // favor an off-center unit so that the same one can be used for both // pitch and roll. An on-center unit is used (for pitch)if that's all // that's in contact with the ground. i=0; ref=-1; center=-1; while( (ref < 0) && (i < fdmex->GetGroundReactions()->GetNumGearUnits()) ) { if(fdmex->GetGroundReactions()->GetGearUnit(i)->GetWOW()) { if(fabs(fdmex->GetGroundReactions()->GetGearUnit(i)->GetBodyLocation(2)) > 0.01) ref=i; else center=i; } i++; } if((ref < 0) && (center >= 0)) { ref=center; } cout << "SetThetaOnGround ref gear: " << ref << endl; if(ref >= 0) { double sp = fdmex->GetPropagate()->GetSinEuler(ePhi); double cp = fdmex->GetPropagate()->GetCosEuler(ePhi); double lx = fdmex->GetGroundReactions()->GetGearUnit(ref)->GetBodyLocation(1); double ly = fdmex->GetGroundReactions()->GetGearUnit(ref)->GetBodyLocation(2); double lz = fdmex->GetGroundReactions()->GetGearUnit(ref)->GetBodyLocation(3); double hagl = -1*lx*sin(ff) + ly*sp*cos(ff) + lz*cp*cos(ff); fgic->SetAltitudeAGLFtIC(hagl); cout << "SetThetaOnGround new alt: " << hagl << endl; } fgic->SetPitchAngleRadIC(ff); cout << "SetThetaOnGround new theta: " << ff << endl; } /*****************************************************************************/ bool FGTrimAxis::initTheta(void) { int i,N; int iForward = 0; int iAft = 1; double zAft,zForward,zDiff,theta; double xAft,xForward,xDiff; bool level; double saveAlt; saveAlt=fgic->GetAltitudeAGLFtIC(); fgic->SetAltitudeAGLFtIC(100); N=fdmex->GetGroundReactions()->GetNumGearUnits(); //find the first wheel unit forward of the cg //the list is short so a simple linear search is fine for( i=0; iGetGroundReactions()->GetGearUnit(i)->GetBodyLocation(1) > 0 ) { iForward=i; break; } } //now find the first wheel unit aft of the cg for( i=0; iGetGroundReactions()->GetGearUnit(i)->GetBodyLocation(1) < 0 ) { iAft=i; break; } } // now adjust theta till the wheels are the same distance from the ground xAft=fdmex->GetGroundReactions()->GetGearUnit(iAft)->GetBodyLocation(1); xForward=fdmex->GetGroundReactions()->GetGearUnit(iForward)->GetBodyLocation(1); xDiff = xForward - xAft; zAft=fdmex->GetGroundReactions()->GetGearUnit(iAft)->GetLocalGear(3); zForward=fdmex->GetGroundReactions()->GetGearUnit(iForward)->GetLocalGear(3); zDiff = zForward - zAft; level=false; theta=fgic->GetPitchAngleDegIC(); while(!level && (i < 100)) { theta+=radtodeg*atan(zDiff/xDiff); fgic->SetPitchAngleDegIC(theta); fdmex->RunIC(); zAft=fdmex->GetGroundReactions()->GetGearUnit(iAft)->GetLocalGear(3); zForward=fdmex->GetGroundReactions()->GetGearUnit(iForward)->GetLocalGear(3); zDiff = zForward - zAft; //cout << endl << theta << " " << zDiff << endl; //cout << "0: " << fdmex->GetGroundReactions()->GetGearUnit(0)->GetLocalGear() << endl; //cout << "1: " << fdmex->GetGroundReactions()->GetGearUnit(1)->GetLocalGear() << endl; if(fabs(zDiff ) < 0.1) level=true; i++; } //cout << i << endl; if (debug_lvl > 0) { cout << " Initial Theta: " << fdmex->GetPropagate()->GetEuler(eTht)*radtodeg << endl; cout << " Used gear unit " << iAft << " as aft and " << iForward << " as forward" << endl; } control_min=(theta+5)*degtorad; control_max=(theta-5)*degtorad; fgic->SetAltitudeAGLFtIC(saveAlt); if(i < 100) return true; else return false; } /*****************************************************************************/ void FGTrimAxis::SetPhiOnGround(double ff) { int i,ref; i=0; ref=-1; //must have an off-center unit here while ( (ref < 0) && (i < fdmex->GetGroundReactions()->GetNumGearUnits()) ) { if ( (fdmex->GetGroundReactions()->GetGearUnit(i)->GetWOW()) && (fabs(fdmex->GetGroundReactions()->GetGearUnit(i)->GetBodyLocation(2)) > 0.01)) ref=i; i++; } if (ref >= 0) { double st = fdmex->GetPropagate()->GetSinEuler(eTht); double ct = fdmex->GetPropagate()->GetCosEuler(eTht); double lx = fdmex->GetGroundReactions()->GetGearUnit(ref)->GetBodyLocation(1); double ly = fdmex->GetGroundReactions()->GetGearUnit(ref)->GetBodyLocation(2); double lz = fdmex->GetGroundReactions()->GetGearUnit(ref)->GetBodyLocation(3); double hagl = -1*lx*st + ly*sin(ff)*ct + lz*cos(ff)*ct; fgic->SetAltitudeAGLFtIC(hagl); } fgic->SetRollAngleRadIC(ff); } /*****************************************************************************/ void FGTrimAxis::Run(void) { double last_state_value; int i; setControl(); //cout << "FGTrimAxis::Run: " << control_value << endl; i=0; bool stable=false; while(!stable) { i++; last_state_value=state_value; fdmex->RunIC(); getState(); if(i > 1) { if((fabs(last_state_value - state_value) < tolerance) || (i >= 100) ) stable=true; } } its_to_stable_value=i; total_stability_iterations+=its_to_stable_value; total_iterations++; } /*****************************************************************************/ void FGTrimAxis::setThrottlesPct(void) { double tMin,tMax; for(unsigned i=0;iGetPropulsion()->GetNumEngines();i++) { tMin=fdmex->GetPropulsion()->GetEngine(i)->GetThrottleMin(); tMax=fdmex->GetPropulsion()->GetEngine(i)->GetThrottleMax(); //cout << "setThrottlespct: " << i << ", " << control_min << ", " << control_max << ", " << control_value; fdmex->GetFCS()->SetThrottleCmd(i,tMin+control_value*(tMax-tMin)); //cout << "setThrottlespct: " << fdmex->GetFCS()->GetThrottleCmd(i) << endl; fdmex->RunIC(); //apply throttle change fdmex->GetPropulsion()->GetSteadyState(); } } /*****************************************************************************/ void FGTrimAxis::AxisReport(void) { char out[80]; sprintf(out," %20s: %6.2f %5s: %9.2e Tolerance: %3.0e", GetControlName().c_str(), GetControl()*control_convert, GetStateName().c_str(), GetState()+state_target, GetTolerance()); cout << out; if( fabs(GetState()+state_target) < fabs(GetTolerance()) ) cout << " Passed" << endl; else cout << " Failed" << endl; } /*****************************************************************************/ double FGTrimAxis::GetAvgStability( void ) { if(total_iterations > 0) { return double(total_stability_iterations)/double(total_iterations); } return 0; } /*****************************************************************************/ // The bitmasked value choices are as follows: // unset: In this case (the default) JSBSim would only print // out the normally expected messages, essentially echoing // the config files as they are read. If the environment // variable is not set, debug_lvl is set to 1 internally // 0: This requests JSBSim not to output any messages // whatsoever. // 1: This value explicity requests the normal JSBSim // startup messages // 2: This value asks for a message to be printed out when // a class is instantiated // 4: When this value is set, a message is displayed when a // FGModel object executes its Run() method // 8: When this value is set, various runtime state variables // are printed out periodically // 16: When set various parameters are sanity checked and // a message is printed out when they go out of bounds void FGTrimAxis::Debug(int from) { if (debug_lvl <= 0) return; if (debug_lvl & 1 ) { // Standard console startup message output if (from == 0) { // Constructor } } if (debug_lvl & 2 ) { // Instantiation/Destruction notification if (from == 0) cout << "Instantiated: FGTrimAxis" << endl; if (from == 1) cout << "Destroyed: FGTrimAxis" << endl; } if (debug_lvl & 4 ) { // Run() method entry print for FGModel-derived objects } if (debug_lvl & 8 ) { // Runtime state variables } if (debug_lvl & 16) { // Sanity checking } if (debug_lvl & 64) { if (from == 0) { // Constructor cout << IdSrc << endl; cout << IdHdr << endl; } } } }