// electrical.cxx - a flexible, generic electrical system model. // // Written by Curtis Olson, started September 2002. // // Copyright (C) 2002 Curtis L. Olson - http://www.flightgear.org/~curt // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. // // $Id$ #include #include #include #include
#include
#include "electrical.hxx" FGElectricalComponent::FGElectricalComponent() : kind(-1), name(""), volts(0.0), load_amps(0.0) { } FGElectricalSupplier::FGElectricalSupplier ( SGPropertyNode *node ) { kind = FG_SUPPLIER; // cout << "Creating a supplier" << endl; name = node->getStringValue("name"); string _model = node->getStringValue("kind"); // cout << "_model = " << _model << endl; if ( _model == "battery" ) { model = FG_BATTERY; amp_hours = node->getFloatValue("amp-hours", 40.0); percent_remaining = node->getFloatValue("percent-remaining", 1.0); charge_amps = node->getFloatValue("charge-amps", 7.0); } else if ( _model == "alternator" ) { model = FG_ALTERNATOR; rpm_src = node->getStringValue("rpm-source"); rpm_threshold = node->getFloatValue("rpm-threshold", 600.0); ideal_amps = node->getFloatValue("amps", 60.0); } else if ( _model == "external" ) { model = FG_EXTERNAL; ideal_amps = node->getFloatValue("amps", 60.0); } else { model = FG_UNKNOWN; } ideal_volts = node->getFloatValue("volts"); int i; for ( i = 0; i < node->nChildren(); ++i ) { SGPropertyNode *child = node->getChild(i); // cout << " scanning: " << child->getName() << endl; if ( !strcmp(child->getName(), "prop") ) { string prop = child->getStringValue(); // cout << " Adding prop = " << prop << endl; add_prop( prop ); fgSetFloat( prop.c_str(), ideal_amps ); } } _rpm_node = fgGetNode( rpm_src.c_str(), true); } float FGElectricalSupplier::apply_load( float amps, float dt ) { if ( model == FG_BATTERY ) { // calculate amp hours used float amphrs_used = amps * dt / 3600.0; // calculate percent of total available capacity float percent_used = amphrs_used / amp_hours; percent_remaining -= percent_used; if ( percent_remaining < 0.0 ) { percent_remaining = 0.0; } else if ( percent_remaining > 1.0 ) { percent_remaining = 1.0; } // cout << "battery percent = " << percent_remaining << endl; return amp_hours * percent_remaining; } else if ( model == FG_ALTERNATOR ) { // scale alternator output for rpms < 600. For rpms >= 600 // give full output. This is just a WAG, and probably not how // it really works but I'm keeping things "simple" to start. float rpm = _rpm_node->getFloatValue(); float factor = rpm / rpm_threshold; if ( factor > 1.0 ) { factor = 1.0; } // cout << "alternator amps = " << amps * factor << endl; float available_amps = ideal_amps * factor; return available_amps - amps; } else if ( model == FG_EXTERNAL ) { // cout << "external amps = " << 0.0 << endl; return available_amps - amps; } else { SG_LOG( SG_ALL, SG_ALERT, "unknown supplier type" ); } return 0.0; } float FGElectricalSupplier::get_output_volts() { if ( model == FG_BATTERY ) { // cout << "battery amps = " << amps << endl; float x = 1.0 - percent_remaining; float tmp = -(3.0 * x - 1.0); float factor = (tmp*tmp*tmp*tmp*tmp + 32) / 32; // cout << "battery % = " << percent_remaining << // " factor = " << factor << endl; // percent_remaining -= 0.001; return ideal_volts * factor; } else if ( model == FG_ALTERNATOR ) { // scale alternator output for rpms < 600. For rpms >= 600 // give full output. This is just a WAG, and probably not how // it really works but I'm keeping things "simple" to start. float rpm = _rpm_node->getFloatValue(); float factor = rpm / rpm_threshold; if ( factor > 1.0 ) { factor = 1.0; } // cout << "alternator amps = " << amps * factor << endl; return ideal_volts * factor; } else if ( model == FG_EXTERNAL ) { // cout << "external amps = " << 0.0 << endl; return ideal_volts; } else { SG_LOG( SG_ALL, SG_ALERT, "unknown supplier type" ); } return 0.0; } float FGElectricalSupplier::get_output_amps() { if ( model == FG_BATTERY ) { // cout << "battery amp_hours = " << amp_hours << endl; // This is a WAG, but produce enough amps to burn the entire // battery in one minute. return amp_hours * 60.0; } else if ( model == FG_ALTERNATOR ) { // scale alternator output for rpms < 600. For rpms >= 600 // give full output. This is just a WAG, and probably not how // it really works but I'm keeping things "simple" to start. float rpm = _rpm_node->getFloatValue(); float factor = rpm / rpm_threshold; if ( factor > 1.0 ) { factor = 1.0; } // cout << "alternator amps = " << ideal_amps * factor << endl; return ideal_amps * factor; } else if ( model == FG_EXTERNAL ) { // cout << "external amps = " << 0.0 << endl; return ideal_amps; } else { SG_LOG( SG_ALL, SG_ALERT, "unknown supplier type" ); } return 0.0; } FGElectricalBus::FGElectricalBus ( SGPropertyNode *node ) { kind = FG_BUS; name = node->getStringValue("name"); int i; for ( i = 0; i < node->nChildren(); ++i ) { SGPropertyNode *child = node->getChild(i); if ( !strcmp(child->getName(), "prop") ) { string prop = child->getStringValue(); add_prop( prop ); } } } FGElectricalOutput::FGElectricalOutput ( SGPropertyNode *node ) { kind = FG_OUTPUT; load_amps = 0.1; // arbitrary default value name = node->getStringValue("name"); SGPropertyNode *draw = node->getNode("rated-draw"); if ( draw != NULL ) { load_amps = draw->getFloatValue(); } // cout << "rated draw = " << output_amps << endl; int i; for ( i = 0; i < node->nChildren(); ++i ) { SGPropertyNode *child = node->getChild(i); if ( !strcmp(child->getName(), "prop") ) { string prop = child->getStringValue(); add_prop( prop ); } } } FGElectricalSwitch::FGElectricalSwitch( SGPropertyNode *node ) : switch_node( NULL ), rating_amps( 0.0f ), circuit_breaker( false ) { bool initial_state = true; int i; for ( i = 0; i < node->nChildren(); ++i ) { SGPropertyNode *child = node->getChild(i); string cname = child->getName(); string cval = child->getStringValue(); if ( cname == "prop" ) { switch_node = fgGetNode( cval.c_str(), true ); // cout << "switch node = " << cval << endl; } else if ( cname == "initial-state" ) { if ( cval == "off" || cval == "false" ) { initial_state = false; } // cout << "initial state = " << initial_state << endl; } else if ( cname == "rating-amps" ) { rating_amps = atof( cval.c_str() ); circuit_breaker = true; // cout << "initial state = " << initial_state << endl; } } switch_node->setBoolValue( initial_state ); // cout << " value = " << switch_node->getBoolValue() << endl; } FGElectricalConnector::FGElectricalConnector ( SGPropertyNode *node, FGElectricalSystem *es ) { kind = FG_CONNECTOR; name = "connector"; int i; for ( i = 0; i < node->nChildren(); ++i ) { SGPropertyNode *child = node->getChild(i); string cname = child->getName(); string cval = child->getStringValue(); // cout << " " << cname << " = " << cval << endl; if ( cname == "input" ) { FGElectricalComponent *s = es->find( child->getStringValue() ); if ( s != NULL ) { add_input( s ); if ( s->get_kind() == FG_SUPPLIER ) { s->add_output( this ); } else if ( s->get_kind() == FG_BUS ) { s->add_output( this ); } else { SG_LOG( SG_ALL, SG_ALERT, "Attempt to connect to something that can't provide an output: " << child->getStringValue() ); } } else { SG_LOG( SG_ALL, SG_ALERT, "Can't find named source: " << child->getStringValue() ); } } else if ( cname == "output" ) { FGElectricalComponent *s = es->find( child->getStringValue() ); if ( s != NULL ) { add_output( s ); if ( s->get_kind() == FG_BUS ) { s->add_input( this ); } else if ( s->get_kind() == FG_OUTPUT ) { s->add_input( this ); } else if ( s->get_kind() == FG_SUPPLIER && ((FGElectricalSupplier *)s)->get_model() == FGElectricalSupplier::FG_BATTERY ) { s->add_output( this ); } else { SG_LOG( SG_ALL, SG_ALERT, "Attempt to connect to something that can't provide an input: " << child->getStringValue() ); } } else { SG_LOG( SG_ALL, SG_ALERT, "Can't find named source: " << child->getStringValue() ); } } else if ( cname == "switch" ) { // cout << "Switch = " << child->getStringValue() << endl; FGElectricalSwitch s( child ); add_switch( s ); } } } // set all switches to the specified state void FGElectricalConnector::set_switches( bool state ) { // cout << "setting switch state to " << state << endl; for ( unsigned int i = 0; i < switches.size(); ++i ) { switches[i].set_state( state ); } } // return true if all switches are true, false otherwise. A connector // could have multiple switches, but they all need to be true(closed) // for current to get through. bool FGElectricalConnector::get_state() { unsigned int i; for ( i = 0; i < switches.size(); ++i ) { if ( ! switches[i].get_state() ) { return false; } } return true; } FGElectricalSystem::FGElectricalSystem ( SGPropertyNode *node ) : name("electrical"), num(0), path(""), enabled(false) { int i; for ( i = 0; i < node->nChildren(); ++i ) { SGPropertyNode *child = node->getChild(i); string cname = child->getName(); string cval = child->getStringValue(); if ( cname == "name" ) { name = cval; } else if ( cname == "number" ) { num = child->getIntValue(); } else if ( cname == "path" ) { path = cval; } else { SG_LOG( SG_SYSTEMS, SG_WARN, "Error in electrical system config logic" ); if ( name.length() ) { SG_LOG( SG_SYSTEMS, SG_WARN, "Section = " << name ); } } } } FGElectricalSystem::~FGElectricalSystem () { } void FGElectricalSystem::init () { config_props = new SGPropertyNode; _volts_out = fgGetNode( "/systems/electrical/volts", true ); _amps_out = fgGetNode( "/systems/electrical/amps", true ); // allow the electrical system to be specified via the // aircraft-set.xml file (for backwards compatibility) or through // the aircraft-systems.xml file. If a -set.xml entry is // specified, that overrides the system entry. SGPropertyNode *path_n = fgGetNode("/sim/systems/electrical/path"); if ( path_n ) { if ( path.length() ) { SG_LOG( SG_ALL, SG_INFO, "NOTICE: System manager configuration specifies an " << "electrical system: " << path << " but it is " << "being overridden by the one specified in the -set.xml " << "file: " << path_n->getStringValue() ); } path = path_n->getStringValue(); } if ( path.length() ) { SGPath config( globals->get_fg_root() ); config.append( path ); // load an obsolete xml configuration SG_LOG( SG_ALL, SG_ALERT, "Reading xml electrical system model from " << config.str() ); try { readProperties( config.str(), config_props ); if ( build() ) { enabled = true; } else { SG_LOG( SG_ALL, SG_ALERT, "Detected a logic error in the electrical system "); SG_LOG( SG_ALL, SG_ALERT, "specification file. See earlier errors for " ); SG_LOG( SG_ALL, SG_ALERT, "details."); exit(-1); } } catch (const sg_exception& exc) { SG_LOG( SG_ALL, SG_ALERT, "Failed to load electrical system model: " << config.str() ); } } else { SG_LOG( SG_ALL, SG_INFO, "No xml-based electrical model specified for this model!"); } if ( !enabled ) { _amps_out->setDoubleValue(0); } delete config_props; } void FGElectricalSystem::bind () { } void FGElectricalSystem::unbind () { } void FGElectricalSystem::update (double dt) { if ( !enabled ) { return; } // cout << "Updating electrical system, dt = " << dt << endl; unsigned int i; // zero out the voltage before we start, but don't clear the // requested load values. for ( i = 0; i < suppliers.size(); ++i ) { suppliers[i]->set_volts( 0.0 ); } for ( i = 0; i < buses.size(); ++i ) { buses[i]->set_volts( 0.0 ); } for ( i = 0; i < outputs.size(); ++i ) { outputs[i]->set_volts( 0.0 ); } for ( i = 0; i < connectors.size(); ++i ) { connectors[i]->set_volts( 0.0 ); } // for each "external" supplier, propagate the electrical current for ( i = 0; i < suppliers.size(); ++i ) { FGElectricalSupplier *node = (FGElectricalSupplier *)suppliers[i]; if ( node->get_model() == FGElectricalSupplier::FG_EXTERNAL ) { float load; // cout << "Starting propagation: " << suppliers[i]->get_name() // << endl; load = propagate( suppliers[i], dt, node->get_output_volts(), node->get_output_amps(), " " ); if ( node->apply_load( load, dt ) < 0.0 ) { cout << "Error drawing more current than available!" << endl; } } } // for each "alternator" supplier, propagate the electrical // current for ( i = 0; i < suppliers.size(); ++i ) { FGElectricalSupplier *node = (FGElectricalSupplier *)suppliers[i]; if ( node->get_model() == FGElectricalSupplier::FG_ALTERNATOR) { float load; // cout << "Starting propagation: " << suppliers[i]->get_name() // << endl; load = propagate( suppliers[i], dt, node->get_output_volts(), node->get_output_amps(), " " ); if ( node->apply_load( load, dt ) < 0.0 ) { cout << "Error drawing more current than available!" << endl; } } } // for each "battery" supplier, propagate the electrical // current for ( i = 0; i < suppliers.size(); ++i ) { FGElectricalSupplier *node = (FGElectricalSupplier *)suppliers[i]; if ( node->get_model() == FGElectricalSupplier::FG_BATTERY ) { float load; // cout << "Starting propagation: " << suppliers[i]->get_name() // << endl; load = propagate( suppliers[i], dt, node->get_output_volts(), node->get_output_amps(), " " ); // cout << "battery load = " << load << endl; if ( node->apply_load( load, dt ) < 0.0 ) { cout << "Error drawing more current than available!" << endl; } } } float alt_norm = fgGetFloat("/systems/electrical/suppliers/alternator") / 60.0; // impliment an extremely simplistic voltage model (assumes // certain naming conventions in electrical system config) // FIXME: we probably want to be able to feed power from all // engines if they are running and the master-alt is switched on float volts = 0.0; if ( fgGetBool("/controls/engines/engine[0]/master-bat") ) { volts = 24.0; } if ( fgGetBool("/controls/engines/engine[0]/master-alt") ) { if ( fgGetFloat("/engines/engine[0]/rpm") > 800 ) { float alt_contrib = 28.0; if ( alt_contrib > volts ) { volts = alt_contrib; } } else if ( fgGetFloat("/engines/engine[0]/rpm") > 200 ) { float alt_contrib = 20.0; if ( alt_contrib > volts ) { volts = alt_contrib; } } } _volts_out->setFloatValue( volts ); // impliment an extremely simplistic amps model (assumes certain // naming conventions in the electrical system config) ... FIXME: // make this more generic float amps = 0.0; if ( fgGetBool("/controls/engines/engine[0]/master-bat") ) { if ( fgGetBool("/controls/engines/engine[0]/master-alt") && fgGetFloat("/engines/engine[0]/rpm") > 800 ) { amps += 40.0 * alt_norm; } amps -= 15.0; // normal load if ( fgGetBool("/controls/switches/flashing-beacon") ) { amps -= 7.5; } if ( fgGetBool("/controls/switches/nav-lights") ) { amps -= 7.5; } if ( amps > 7.0 ) { amps = 7.0; } } _amps_out->setFloatValue( amps ); } bool FGElectricalSystem::build () { SGPropertyNode *node; int i; int count = config_props->nChildren(); for ( i = 0; i < count; ++i ) { node = config_props->getChild(i); string name = node->getName(); // cout << name << endl; if ( name == "supplier" ) { FGElectricalSupplier *s = new FGElectricalSupplier( node ); suppliers.push_back( s ); } else if ( name == "bus" ) { FGElectricalBus *b = new FGElectricalBus( node ); buses.push_back( b ); } else if ( name == "output" ) { FGElectricalOutput *o = new FGElectricalOutput( node ); outputs.push_back( o ); } else if ( name == "connector" ) { FGElectricalConnector *c = new FGElectricalConnector( node, this ); connectors.push_back( c ); } else { SG_LOG( SG_ALL, SG_ALERT, "Unknown component type specified: " << name ); return false; } } return true; } // propagate the electrical current through the network, returns the // total current drawn by the children of this node. float FGElectricalSystem::propagate( FGElectricalComponent *node, double dt, float input_volts, float input_amps, string s ) { s += " "; float total_load = 0.0; // determine the current to carry forward float volts = 0.0; if ( !fgGetBool("/systems/electrical/serviceable") ) { volts = 0; } else if ( node->get_kind() == FGElectricalComponent::FG_SUPPLIER ) { // cout << s << "is a supplier (" << node->get_name() << ")" << endl; FGElectricalSupplier *supplier = (FGElectricalSupplier *)node; if ( supplier->get_model() == FGElectricalSupplier::FG_BATTERY ) { // cout << s << " (and is a battery)" << endl; float battery_volts = supplier->get_output_volts(); if ( battery_volts < (input_volts - 0.1) ) { // special handling of a battery charge condition // cout << s << " (and is being charged) in v = " // << input_volts << " current v = " << battery_volts // << endl; supplier->apply_load( -supplier->get_charge_amps(), dt ); return supplier->get_charge_amps(); } } volts = input_volts; } else if ( node->get_kind() == FGElectricalComponent::FG_BUS ) { // cout << s << "is a bus (" << node->get_name() << ")" << endl; volts = input_volts; } else if ( node->get_kind() == FGElectricalComponent::FG_OUTPUT ) { // cout << s << "is an output (" << node->get_name() << ")" << endl; volts = input_volts; if ( volts > 1.0 ) { // draw current if we have voltage total_load = node->get_load_amps(); } } else if ( node->get_kind() == FGElectricalComponent::FG_CONNECTOR ) { // cout << s << "is a connector (" << node->get_name() << ")" << endl; if ( ((FGElectricalConnector *)node)->get_state() ) { volts = input_volts; } else { volts = 0.0; } // cout << s << " input_volts = " << volts << endl; } else { SG_LOG( SG_ALL, SG_ALERT, "unkown node type" ); } int i; // if this node has found a stronger power source, update the // value and propagate to all children if ( volts > node->get_volts() ) { node->set_volts( volts ); for ( i = 0; i < node->get_num_outputs(); ++i ) { FGElectricalComponent *child = node->get_output(i); // send current equal to load total_load += propagate( child, dt, volts, child->get_load_amps(), s ); } // if not an output node, register the downstream current draw // (sum of all children) with this node. If volts are zero, // current draw should be zero. if ( node->get_kind() != FGElectricalComponent::FG_OUTPUT ) { node->set_load_amps( total_load ); } node->set_available_amps( input_amps - total_load ); // publish values to specified properties for ( i = 0; i < node->get_num_props(); ++i ) { fgSetFloat( node->get_prop(i).c_str(), node->get_volts() ); } /* cout << s << node->get_name() << " -> (volts) " << node->get_volts() << endl; cout << s << node->get_name() << " -> (load amps) " << total_load << endl; cout << s << node->get_name() << " -> (input amps) " << input_amps << endl; cout << s << node->get_name() << " -> (extra amps) " << node->get_available_amps() << endl; */ return total_load; } else { // cout << s << "no further propagation" << endl; return 0.0; } } // search for the named component and return a pointer to it, NULL otherwise FGElectricalComponent *FGElectricalSystem::find ( const string &name ) { unsigned int i; string s; // search suppliers for ( i = 0; i < suppliers.size(); ++i ) { s = suppliers[i]->get_name(); // cout << " " << s << endl; if ( s == name ) { return suppliers[i]; } } // then search buses for ( i = 0; i < buses.size(); ++i ) { s = buses[i]->get_name(); // cout << " " << s << endl; if ( s == name ) { return buses[i]; } } // then search outputs for ( i = 0; i < outputs.size(); ++i ) { s = outputs[i]->get_name(); // cout << " " << s << endl; if ( s == name ) { return outputs[i]; } } // nothing found return NULL; }