#include "test_navRadio.hxx" #include #include #include "test_suite/FGTestApi/testGlobals.hxx" #include "test_suite/FGTestApi/NavDataCache.hxx" #include #include #include #include // Set up function for each test. void NavRadioTests::setUp() { FGTestApi::setUp::initTestGlobals("navradio"); FGTestApi::setUp::initNavDataCache(); } // Clean up after each test. void NavRadioTests::tearDown() { FGTestApi::tearDown::shutdownTestGlobals(); } void NavRadioTests::setPositionAndStabilise(FGNavRadio* r, const SGGeod& g) { FGTestApi::setPosition(g); for (int i=0; i<60; ++i) { r->update(0.1); } } void NavRadioTests::testBasic() { SGPropertyNode_ptr configNode(new SGPropertyNode); configNode->setStringValue("name", "navtest"); configNode->setIntValue("number", 2); std::unique_ptr r(new FGNavRadio(configNode)); r->bind(); r->init(); SGPropertyNode_ptr node = globals->get_props()->getNode("instrumentation/navtest[2]"); node->setBoolValue("serviceable", true); // needed for the radio to power up globals->get_props()->setDoubleValue("systems/electrical/outputs/nav", 6.0); node->setDoubleValue("frequencies/selected-mhz", 113.8); SGGeod pos = SGGeod::fromDegFt(-3.352780, 55.499199, 20000); setPositionAndStabilise(r.get(), pos); CPPUNIT_ASSERT_EQUAL(true, node->getBoolValue("operable")); CPPUNIT_ASSERT(!strcmp("TLA", node->getStringValue("nav-id"))); CPPUNIT_ASSERT_EQUAL(true, node->getBoolValue("in-range")); } void NavRadioTests::testCDIDeflection() { SGPropertyNode_ptr configNode(new SGPropertyNode); configNode->setStringValue("name", "navtest"); configNode->setIntValue("number", 2); std::unique_ptr r(new FGNavRadio(configNode)); r->bind(); r->init(); SGPropertyNode_ptr node = globals->get_props()->getNode("instrumentation/navtest[2]"); node->setBoolValue("serviceable", true); // needed for the radio to power up globals->get_props()->setDoubleValue("systems/electrical/outputs/nav", 6.0); node->setDoubleValue("frequencies/selected-mhz", 113.55); node->setDoubleValue("radials/selected-deg", 25); FGPositioned::TypeFilter f{FGPositioned::VOR}; FGNavRecordRef nav = fgpositioned_cast(FGPositioned::findClosestWithIdent("MCT", SGGeod::fromDeg(-2.26, 53.3), &f)); // twist of MCT is 5.0, so we use a bearing of 20 here, not 25 SGGeod posOnRadial = SGGeodesy::direct(nav->geod(), 20.0, 10 * SG_NM_TO_METER); posOnRadial.setElevationFt(10000); setPositionAndStabilise(r.get(), posOnRadial); CPPUNIT_ASSERT_EQUAL(true, node->getBoolValue("operable")); CPPUNIT_ASSERT(!strcmp("MCT", node->getStringValue("nav-id"))); CPPUNIT_ASSERT_DOUBLES_EQUAL(0.0, node->getDoubleValue("heading-needle-deflection"), 0.01); CPPUNIT_ASSERT_DOUBLES_EQUAL(0.0, node->getDoubleValue("heading-needle-deflection-norm"), 0.01); CPPUNIT_ASSERT_DOUBLES_EQUAL(1.0, node->getDoubleValue("signal-quality-norm"), 0.01); CPPUNIT_ASSERT_DOUBLES_EQUAL(0.0, node->getDoubleValue("crosstrack-error-m"), 0.01); CPPUNIT_ASSERT(node->getBoolValue("from-flag")); CPPUNIT_ASSERT(!node->getBoolValue("to-flag")); // move off course SGGeod posOffRadial = SGGeodesy::direct(nav->geod(), 15.0, 20 * SG_NM_TO_METER); // 5 degress off posOffRadial.setElevationFt(12000); setPositionAndStabilise(r.get(), posOffRadial); CPPUNIT_ASSERT_DOUBLES_EQUAL(5.0, node->getDoubleValue("heading-needle-deflection"), 0.1); CPPUNIT_ASSERT_DOUBLES_EQUAL(0.5, node->getDoubleValue("heading-needle-deflection-norm"), 0.01); CPPUNIT_ASSERT_DOUBLES_EQUAL(1.0, node->getDoubleValue("signal-quality-norm"), 0.01); double xtkE = sin(5.0 * SG_DEGREES_TO_RADIANS) * 20 * SG_NM_TO_METER; CPPUNIT_ASSERT_DOUBLES_EQUAL(xtkE, node->getDoubleValue("crosstrack-error-m"), 50.0); CPPUNIT_ASSERT(node->getBoolValue("from-flag")); CPPUNIT_ASSERT(!node->getBoolValue("to-flag")); posOffRadial = SGGeodesy::direct(nav->geod(), 28.0, 30 * SG_NM_TO_METER); // 8 degress off posOffRadial.setElevationFt(16000); setPositionAndStabilise(r.get(), posOffRadial); CPPUNIT_ASSERT_DOUBLES_EQUAL(1.0, node->getDoubleValue("signal-quality-norm"), 0.01); CPPUNIT_ASSERT_DOUBLES_EQUAL(-8.0, node->getDoubleValue("heading-needle-deflection"), 0.1); CPPUNIT_ASSERT_DOUBLES_EQUAL(-0.8, node->getDoubleValue("heading-needle-deflection-norm"), 0.01); xtkE = sin(-8.0 * SG_DEGREES_TO_RADIANS) * 30 * SG_NM_TO_METER; CPPUNIT_ASSERT_DOUBLES_EQUAL(xtkE, node->getDoubleValue("crosstrack-error-m"), 50.0); // move more than ten degrees off course posOffRadial = SGGeodesy::direct(nav->geod(), 33.0, 40 * SG_NM_TO_METER); // 13 degress off posOffRadial.setElevationFt(16000); setPositionAndStabilise(r.get(), posOffRadial); // pegged to full deflection CPPUNIT_ASSERT_DOUBLES_EQUAL(1.0, node->getDoubleValue("signal-quality-norm"), 0.01); CPPUNIT_ASSERT_DOUBLES_EQUAL(-10.0, node->getDoubleValue("heading-needle-deflection"), 0.1); CPPUNIT_ASSERT_DOUBLES_EQUAL(-1.0, node->getDoubleValue("heading-needle-deflection-norm"), 0.01); // cross track error is computed based on true deflection, not clamped xtkE = sin(-13.0 * SG_DEGREES_TO_RADIANS) * 40 * SG_NM_TO_METER; CPPUNIT_ASSERT_DOUBLES_EQUAL(xtkE, node->getDoubleValue("crosstrack-error-m"), 50.0); CPPUNIT_ASSERT(node->getBoolValue("from-flag")); CPPUNIT_ASSERT(!node->getBoolValue("to-flag")); // try on the TO side of the station // let's use Perth VOR, but the Australian one to check southern // hemisphere operation node->setDoubleValue("frequencies/selected-mhz", 113.7); node->setDoubleValue("radials/selected-deg", 42.0); // twist is -2.0 CPPUNIT_ASSERT(!strcmp("113.70", node->getStringValue("frequencies/selected-mhz-fmt"))); auto perthVOR = fgpositioned_cast( FGPositioned::findClosestWithIdent("PH", SGGeod::fromDeg(115.95, -31.9), &f)); SGGeod p = SGGeodesy::direct(perthVOR->geod(), 220.0, 20 * SG_NM_TO_METER); // on the reciprocal radial p.setElevationFt(12000); setPositionAndStabilise(r.get(), p); CPPUNIT_ASSERT(!strcmp("PH", node->getStringValue("nav-id"))); CPPUNIT_ASSERT_DOUBLES_EQUAL(1.0, node->getDoubleValue("signal-quality-norm"), 0.01); CPPUNIT_ASSERT_DOUBLES_EQUAL(40.0, node->getDoubleValue("heading-deg"), 0.5); // actual radial has twist subtracted CPPUNIT_ASSERT_DOUBLES_EQUAL(222.0, node->getDoubleValue("radials/actual-deg"), 0.01); CPPUNIT_ASSERT_DOUBLES_EQUAL(0.0, node->getDoubleValue("heading-needle-deflection"), 0.1); CPPUNIT_ASSERT_DOUBLES_EQUAL(0.0, node->getDoubleValue("heading-needle-deflection-norm"), 0.01); CPPUNIT_ASSERT_DOUBLES_EQUAL(0.0, node->getDoubleValue("crosstrack-error-m"), 50.0); CPPUNIT_ASSERT(!node->getBoolValue("from-flag")); CPPUNIT_ASSERT(node->getBoolValue("to-flag")); // off course on the TO side p = SGGeodesy::direct(perthVOR->geod(), 227.0, 100 * SG_NM_TO_METER); p.setElevationFt(18000); setPositionAndStabilise(r.get(), p); CPPUNIT_ASSERT_DOUBLES_EQUAL(1.0, node->getDoubleValue("signal-quality-norm"), 0.01); CPPUNIT_ASSERT_DOUBLES_EQUAL(47.0, node->getDoubleValue("heading-deg"), 1); CPPUNIT_ASSERT_DOUBLES_EQUAL(229.0, node->getDoubleValue("radials/actual-deg"), 0.01); CPPUNIT_ASSERT_DOUBLES_EQUAL(7.0, node->getDoubleValue("heading-needle-deflection"), 0.1); CPPUNIT_ASSERT_DOUBLES_EQUAL(0.7, node->getDoubleValue("heading-needle-deflection-norm"), 0.01); xtkE = sin(7.0 * SG_DEGREES_TO_RADIANS) * 100 * SG_NM_TO_METER; CPPUNIT_ASSERT_DOUBLES_EQUAL(xtkE, node->getDoubleValue("crosstrack-error-m"), 50.0); CPPUNIT_ASSERT(!node->getBoolValue("from-flag")); CPPUNIT_ASSERT(node->getBoolValue("to-flag")); } void NavRadioTests::testILSBasic() { // radio setup SGPropertyNode_ptr configNode(new SGPropertyNode); configNode->setStringValue("name", "navtest"); configNode->setIntValue("number", 2); std::unique_ptr r(new FGNavRadio(configNode)); r->bind(); r->init(); SGPropertyNode_ptr node = globals->get_props()->getNode("instrumentation/navtest[2]"); node->setBoolValue("serviceable", true); globals->get_props()->setDoubleValue("systems/electrical/outputs/nav", 6.0); // test basic ILS: KSFO 28L FGPositioned::TypeFilter f{{FGPositioned::VOR, FGPositioned::ILS, FGPositioned::LOC}}; FGNavRecordRef ils = fgpositioned_cast( FGPositioned::findClosestWithIdent("ISFO", SGGeod::fromDeg(-112, 37.6), &f)); CPPUNIT_ASSERT(ils->type() == FGPositioned::ILS); node->setDoubleValue("frequencies/selected-mhz", 109.55); // node->setDoubleValue("radials/selected-deg", 42.0); // twist is -2.0 CPPUNIT_ASSERT(!strcmp("109.55", node->getStringValue("frequencies/selected-mhz-fmt"))); // note we need full precision here, due to ILS sensitivity SGGeod p = SGGeodesy::direct(ils->geod(), 117.932, 10 * SG_NM_TO_METER); p.setElevationFt(2500); setPositionAndStabilise(r.get(), p); CPPUNIT_ASSERT(!strcmp("ISFO", node->getStringValue("nav-id"))); CPPUNIT_ASSERT_DOUBLES_EQUAL(297.9, node->getDoubleValue("radials/target-radial-deg"), 0.1); CPPUNIT_ASSERT_DOUBLES_EQUAL(1.0, node->getDoubleValue("signal-quality-norm"), 0.01); CPPUNIT_ASSERT_DOUBLES_EQUAL(297.9, node->getDoubleValue("heading-deg"), 1); CPPUNIT_ASSERT_DOUBLES_EQUAL(117.932, node->getDoubleValue("radials/actual-deg"), 0.1); CPPUNIT_ASSERT_DOUBLES_EQUAL(0.0, node->getDoubleValue("heading-needle-deflection"), 0.1); CPPUNIT_ASSERT_DOUBLES_EQUAL(0.0, node->getDoubleValue("heading-needle-deflection-norm"), 0.01); CPPUNIT_ASSERT_DOUBLES_EQUAL(0.0, node->getDoubleValue("crosstrack-error-m"), 10.0); CPPUNIT_ASSERT(!node->getBoolValue("from-flag")); CPPUNIT_ASSERT(node->getBoolValue("to-flag")); // 1 degree offset p = SGGeodesy::direct(ils->geod(), 116.932, 6 * SG_NM_TO_METER); p.setElevationFt(1500); setPositionAndStabilise(r.get(), p); const double locWidth = ils->localizerWidth(); const double deflectionScale = 20.0 / locWidth; // 20 degrees is full VOR swing (-10 to +10 degrees) CPPUNIT_ASSERT(!strcmp("ISFO", node->getStringValue("nav-id"))); CPPUNIT_ASSERT_DOUBLES_EQUAL(297.9, node->getDoubleValue("radials/target-radial-deg"), 0.1); CPPUNIT_ASSERT_DOUBLES_EQUAL(1.0, node->getDoubleValue("signal-quality-norm"), 0.01); CPPUNIT_ASSERT_DOUBLES_EQUAL(296.9, node->getDoubleValue("heading-deg"), 1); CPPUNIT_ASSERT_DOUBLES_EQUAL(116.932, node->getDoubleValue("radials/actual-deg"), 0.1); CPPUNIT_ASSERT_DOUBLES_EQUAL(-1.0 * deflectionScale, node->getDoubleValue("heading-needle-deflection"), 0.1); double xtkE = sin(-1.0 * SG_DEGREES_TO_RADIANS) * 6.0 * SG_NM_TO_METER; CPPUNIT_ASSERT_DOUBLES_EQUAL(xtkE, node->getDoubleValue("crosstrack-error-m"), 1.0); CPPUNIT_ASSERT(!node->getBoolValue("from-flag")); CPPUNIT_ASSERT(node->getBoolValue("to-flag")); // test pegged (4 degrees off course) p = SGGeodesy::direct(ils->geod(), 121.932, 3 * SG_NM_TO_METER); p.setElevationFt(600); setPositionAndStabilise(r.get(), p); CPPUNIT_ASSERT_DOUBLES_EQUAL(1.0, node->getDoubleValue("signal-quality-norm"), 0.01); CPPUNIT_ASSERT_DOUBLES_EQUAL(301.9, node->getDoubleValue("heading-deg"), 1); CPPUNIT_ASSERT_DOUBLES_EQUAL(121.932, node->getDoubleValue("radials/actual-deg"), 0.1); CPPUNIT_ASSERT_DOUBLES_EQUAL(10.0, node->getDoubleValue("heading-needle-deflection"), 0.1); xtkE = sin(4.0 * SG_DEGREES_TO_RADIANS) * 3.0 * SG_NM_TO_METER; CPPUNIT_ASSERT_DOUBLES_EQUAL(xtkE, node->getDoubleValue("crosstrack-error-m"), 1.0); CPPUNIT_ASSERT(!node->getBoolValue("from-flag")); CPPUNIT_ASSERT(node->getBoolValue("to-flag")); // also check ILS back course // 1 degree offset on the BC p = SGGeodesy::direct(ils->geod(), 298.932, 4 * SG_NM_TO_METER); p.setElevationFt(1500); setPositionAndStabilise(r.get(), p); CPPUNIT_ASSERT(!strcmp("ISFO", node->getStringValue("nav-id"))); CPPUNIT_ASSERT_DOUBLES_EQUAL(297.9, node->getDoubleValue("radials/target-radial-deg"), 0.1); CPPUNIT_ASSERT_DOUBLES_EQUAL(1.0, node->getDoubleValue("signal-quality-norm"), 0.01); CPPUNIT_ASSERT_DOUBLES_EQUAL(118.9, node->getDoubleValue("heading-deg"), 1); CPPUNIT_ASSERT_DOUBLES_EQUAL(298.932, node->getDoubleValue("radials/actual-deg"), 0.1); CPPUNIT_ASSERT_DOUBLES_EQUAL(-1.0 * deflectionScale, node->getDoubleValue("heading-needle-deflection"), 0.1); xtkE = sin(-1.0 * SG_DEGREES_TO_RADIANS) * 4.0 * SG_NM_TO_METER; CPPUNIT_ASSERT_DOUBLES_EQUAL(xtkE, node->getDoubleValue("crosstrack-error-m"), 1.0); // these don't change for an ILS CPPUNIT_ASSERT(!node->getBoolValue("from-flag")); CPPUNIT_ASSERT(node->getBoolValue("to-flag")); } void NavRadioTests::testGS() { // radio setup SGPropertyNode_ptr configNode(new SGPropertyNode); configNode->setStringValue("name", "navtest"); configNode->setIntValue("number", 2); std::unique_ptr r(new FGNavRadio(configNode)); r->bind(); r->init(); SGPropertyNode_ptr node = globals->get_props()->getNode("instrumentation/navtest[2]"); node->setBoolValue("serviceable", true); globals->get_props()->setDoubleValue("systems/electrical/outputs/nav", 6.0); // EDDT 28R FGPositioned::TypeFilter f{FGPositioned::GS}; FGNavRecordRef gs = fgpositioned_cast( FGPositioned::findClosestWithIdent("ITLW", SGGeod::fromDeg(13, 52), &f)); CPPUNIT_ASSERT(gs->type() == FGPositioned::GS); node->setDoubleValue("frequencies/selected-mhz", 110.10); CPPUNIT_ASSERT(!strcmp("110.10", node->getStringValue("frequencies/selected-mhz-fmt"))); CPPUNIT_ASSERT_DOUBLES_EQUAL(gs->glideSlopeAngleDeg(), 3.0, 0.001); double gsAngleRad = gs->glideSlopeAngleDeg() * SG_DEGREES_TO_RADIANS; ///////////// // derive the GS geometry in cartesian vectors, to match what // navradio.cxx does SGGeod aboveGS = gs->geod(); aboveGS.setElevationM(gs->geod().getElevationM() + 100.0); SGVec3d gsVerticalAxis = SGVec3d::fromGeod(aboveGS) - gs->cart(); // intentionally different approach to what navradio uses gsVerticalAxis *= 0.01; // make it per meter, since we used 100m above // dervice the baseline SGQuatd baseLineRot = SGQuatd::fromLonLat(gs->geod()) * SGQuatd::fromHeadAttBankDeg(80.828, 0, 0); SGVec3d gsAltAxis = baseLineRot.backTransform(SGVec3d(1.0, 0.0, 0.0)); const SGVec3d gsCart = gs->cart(); ////////////////// SGVec3d radioPos = gsCart; radioPos += (gsVerticalAxis * tan(gsAngleRad) * 8 * SG_NM_TO_METER); radioPos += (gsAltAxis * 8 * SG_NM_TO_METER); setPositionAndStabilise(r.get(), SGGeod::fromCart(radioPos)); CPPUNIT_ASSERT(!strcmp("ITLW", node->getStringValue("nav-id"))); CPPUNIT_ASSERT_DOUBLES_EQUAL(1.0, node->getDoubleValue("signal-quality-norm"), 0.01); CPPUNIT_ASSERT_DOUBLES_EQUAL(3.0, node->getDoubleValue("gs-direct-deg"), 0.1); CPPUNIT_ASSERT_DOUBLES_EQUAL(0.0, node->getDoubleValue("gs-needle-deflection"), 0.1); CPPUNIT_ASSERT_DOUBLES_EQUAL(0.0, node->getDoubleValue("gs-needle-deflection-norm"), 0.01); CPPUNIT_ASSERT(node->getBoolValue("gs-in-range")); // 0.5 degree offset above gsAngleRad = (gs->glideSlopeAngleDeg() + 0.5) * SG_DEGREES_TO_RADIANS; radioPos = gsCart; radioPos += (gsVerticalAxis * tan(gsAngleRad) * 4 * SG_NM_TO_METER); radioPos += (gsAltAxis * 4 * SG_NM_TO_METER); setPositionAndStabilise(r.get(), SGGeod::fromCart(radioPos)); CPPUNIT_ASSERT(!strcmp("ITLW", node->getStringValue("nav-id"))); CPPUNIT_ASSERT_DOUBLES_EQUAL(1.0, node->getDoubleValue("signal-quality-norm"), 0.01); CPPUNIT_ASSERT_DOUBLES_EQUAL(3.5, node->getDoubleValue("gs-direct-deg"), 0.1); CPPUNIT_ASSERT_DOUBLES_EQUAL(-2.5, node->getDoubleValue("gs-needle-deflection"), 0.1); CPPUNIT_ASSERT_DOUBLES_EQUAL(-0.714, node->getDoubleValue("gs-needle-deflection-norm"), 0.01); CPPUNIT_ASSERT(node->getBoolValue("gs-in-range")); // 1 degree below (danger!) gsAngleRad = (gs->glideSlopeAngleDeg() - 1.0) * SG_DEGREES_TO_RADIANS; radioPos = gsCart; radioPos += (gsVerticalAxis * tan(gsAngleRad) * 2 * SG_NM_TO_METER); radioPos += (gsAltAxis * 2 * SG_NM_TO_METER); setPositionAndStabilise(r.get(), SGGeod::fromCart(radioPos)); CPPUNIT_ASSERT_DOUBLES_EQUAL(1.0, node->getDoubleValue("signal-quality-norm"), 0.01); CPPUNIT_ASSERT_DOUBLES_EQUAL(2.0, node->getDoubleValue("gs-direct-deg"), 0.1); CPPUNIT_ASSERT_DOUBLES_EQUAL(3.5, node->getDoubleValue("gs-needle-deflection"), 0.1); CPPUNIT_ASSERT_DOUBLES_EQUAL(1.0, node->getDoubleValue("gs-needle-deflection-norm"), 0.01); CPPUNIT_ASSERT(node->getBoolValue("gs-in-range")); // false course above, reversed gsAngleRad = (gs->glideSlopeAngleDeg() + 3.0) * SG_DEGREES_TO_RADIANS; radioPos = gsCart; radioPos += (gsVerticalAxis * tan(gsAngleRad) * 5 * SG_NM_TO_METER); radioPos += (gsAltAxis * 5 * SG_NM_TO_METER); setPositionAndStabilise(r.get(), SGGeod::fromCart(radioPos)); CPPUNIT_ASSERT_DOUBLES_EQUAL(1.0, node->getDoubleValue("signal-quality-norm"), 0.01); CPPUNIT_ASSERT_DOUBLES_EQUAL(6.0, node->getDoubleValue("gs-direct-deg"), 0.1); CPPUNIT_ASSERT_DOUBLES_EQUAL(0.0, node->getDoubleValue("gs-needle-deflection"), 0.1); CPPUNIT_ASSERT_DOUBLES_EQUAL(0.0, node->getDoubleValue("gs-needle-deflection-norm"), 0.01); CPPUNIT_ASSERT(node->getBoolValue("gs-in-range")); // false course above, reversed, 0.35 offset below gsAngleRad = (gs->glideSlopeAngleDeg() + 2.65) * SG_DEGREES_TO_RADIANS; radioPos = gsCart; radioPos += (gsVerticalAxis * tan(gsAngleRad) * 3 * SG_NM_TO_METER); radioPos += (gsAltAxis * 3 * SG_NM_TO_METER); setPositionAndStabilise(r.get(), SGGeod::fromCart(radioPos)); CPPUNIT_ASSERT_DOUBLES_EQUAL(1.0, node->getDoubleValue("signal-quality-norm"), 0.01); CPPUNIT_ASSERT_DOUBLES_EQUAL(5.65, node->getDoubleValue("gs-direct-deg"), 0.1); CPPUNIT_ASSERT_DOUBLES_EQUAL(-1.75, node->getDoubleValue("gs-needle-deflection"), 0.1); CPPUNIT_ASSERT_DOUBLES_EQUAL(-0.5, node->getDoubleValue("gs-needle-deflection-norm"), 0.01); CPPUNIT_ASSERT(node->getBoolValue("gs-in-range")); } void NavRadioTests::testILSFalseCourse() { // also GS false lobes } void NavRadioTests::testILSPaired() { // EGPH and countless more } void NavRadioTests::testILSAdjacentPaired() { // eg KJFK } void NavRadioTests::testGlideslopeLongDistance() { // radio setup SGPropertyNode_ptr configNode(new SGPropertyNode); configNode->setStringValue("name", "navtest"); configNode->setIntValue("number", 2); std::unique_ptr r(new FGNavRadio(configNode)); r->bind(); r->init(); SGPropertyNode_ptr node = globals->get_props()->getNode("instrumentation/navtest[2]"); node->setBoolValue("serviceable", true); globals->get_props()->setDoubleValue("systems/electrical/outputs/nav", 6.0); // EGLL 27L FGPositioned::TypeFilter f{FGPositioned::GS}; FGNavRecordRef gs = fgpositioned_cast( FGPositioned::findClosestWithIdent("ILL", SGGeod::fromDeg(0, 51), &f)); CPPUNIT_ASSERT(gs->type() == FGPositioned::GS); node->setDoubleValue("frequencies/selected-mhz", 109.50); CPPUNIT_ASSERT(!strcmp("109.50", node->getStringValue("frequencies/selected-mhz-fmt"))); CPPUNIT_ASSERT_DOUBLES_EQUAL(gs->glideSlopeAngleDeg(), 3.0, 0.001); double gsAngleRad = gs->glideSlopeAngleDeg() * SG_DEGREES_TO_RADIANS; // standard approach (per charts) SGGeod p = SGGeodesy::direct(gs->geod(), 90, 7.5 * SG_NM_TO_METER); p.setElevationFt(2500); setPositionAndStabilise(r.get(), p); CPPUNIT_ASSERT_EQUAL(true, node->getBoolValue("gs-in-range")); // normal approach p = SGGeodesy::direct(gs->geod(), 90, 9 * SG_NM_TO_METER); p.setElevationFt(3000); setPositionAndStabilise(r.get(), p); CPPUNIT_ASSERT_EQUAL(true, node->getBoolValue("gs-in-range")); // in our current nav data, the GS range is defined as 10nm, so the gs-in-range // is false for these // 4000 feet intercept p = SGGeodesy::direct(gs->geod(), 90, 12 * SG_NM_TO_METER); p.setElevationFt(4000); setPositionAndStabilise(r.get(), p); CPPUNIT_ASSERT_EQUAL(false, node->getBoolValue("gs-in-range")); CPPUNIT_ASSERT_EQUAL(true, node->getBoolValue("in-range")); // further back p = SGGeodesy::direct(gs->geod(), 90, 17.5 * SG_NM_TO_METER); p.setElevationFt(4000); setPositionAndStabilise(r.get(), p); CPPUNIT_ASSERT_EQUAL(false, node->getBoolValue("gs-in-range")); CPPUNIT_ASSERT_EQUAL(true, node->getBoolValue("in-range")); // really pushing it p = SGGeodesy::direct(gs->geod(), 90, 25 * SG_NM_TO_METER); p.setElevationFt(4000); setPositionAndStabilise(r.get(), p); CPPUNIT_ASSERT_EQUAL(false, node->getBoolValue("gs-in-range")); CPPUNIT_ASSERT_EQUAL(true, node->getBoolValue("in-range")); }