// polygon.cxx -- polygon (with holes) management class // // Written by Curtis Olson, started March 1999. // // Copyright (C) 1999 Curtis L. Olson - curt@flightgear.org // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. // // $Id$ // include Generic Polygon Clipping Library // // http://www.cs.man.ac.uk/aig/staff/alan/software/ // extern "C" { #include } #include #include #include "trisegs.hxx" #include "polygon.hxx" // Constructor FGPolygon::FGPolygon( void ) { } // Destructor FGPolygon::~FGPolygon( void ) { } // Given a line segment specified by two endpoints p1 and p2, return // the slope of the line. static double slope( const Point3D& p0, const Point3D& p1 ) { if ( fabs(p0.x() - p1.x()) > FG_EPSILON ) { return (p0.y() - p1.y()) / (p0.x() - p1.x()); } else { return 1.0e+999; // really big number } } // Calculate theta of angle (a, b, c) static double calc_angle(point2d a, point2d b, point2d c) { point2d u, v; double udist, vdist, uv_dot, tmp; // u . v = ||u|| * ||v|| * cos(theta) u.x = b.x - a.x; u.y = b.y - a.y; udist = sqrt( u.x * u.x + u.y * u.y ); // printf("udist = %.6f\n", udist); v.x = b.x - c.x; v.y = b.y - c.y; vdist = sqrt( v.x * v.x + v.y * v.y ); // printf("vdist = %.6f\n", vdist); uv_dot = u.x * v.x + u.y * v.y; // printf("uv_dot = %.6f\n", uv_dot); tmp = uv_dot / (udist * vdist); // printf("tmp = %.6f\n", tmp); return acos(tmp); } // Given a line segment specified by two endpoints p1 and p2, return // the y value of a point on the line that intersects with the // verticle line through x. Return true if an intersection is found, // false otherwise. static bool intersects( Point3D p0, Point3D p1, double x, Point3D *result ) { // sort the end points if ( p0.x() > p1.x() ) { Point3D tmp = p0; p0 = p1; p1 = tmp; } if ( (x < p0.x()) || (x > p1.x()) ) { // out of range of line segment, bail right away return false; } // equation of a line through (x0,y0) and (x1,y1): // // y = y1 + (x - x1) * (y0 - y1) / (x0 - x1) double y; if ( fabs(p0.x() - p1.x()) > FG_EPSILON ) { y = p1.y() + (x - p1.x()) * (p0.y() - p1.y()) / (p0.x() - p1.x()); } else { return false; } result->setx(x); result->sety(y); if ( p0.y() <= p1.y() ) { if ( (p0.y() <= y) && (y <= p1.y()) ) { return true; } } else { if ( (p0.y() >= y) && (y >= p1.y()) ) { return true; } } return false; } // calculate some "arbitrary" point inside the specified contour for // assigning attribute areas void FGPolygon::calc_point_inside( const int contour, const FGTriNodes& trinodes ) { Point3D tmp, min, ln, p1, p2, p3, m, result; int min_node_index = 0; int min_index = 0; int p1_index = 0; int p2_index = 0; int ln_index = 0; // 1. find a point on the specified contour, min, with smallest y // min.y() starts greater than the biggest possible lat (degrees) min.sety( 100.0 ); point_list_iterator current, last; current = poly[contour].begin(); last = poly[contour].end(); for ( int i = 0; i < contour_size( contour ); ++i ) { tmp = get_pt( contour, i ); if ( tmp.y() < min.y() ) { min = tmp; min_index = trinodes.find( min ); min_node_index = i; // cout << "min index = " << *current // << " value = " << min_y << endl; } else { // cout << " index = " << *current << endl; } } cout << "min node index = " << min_node_index << endl; cout << "min index = " << min_index << " value = " << trinodes.get_node( min_index ) << " == " << min << endl; // 2. take midpoint, m, of min with neighbor having lowest // fabs(slope) if ( min_node_index == 0 ) { p1 = poly[contour][1]; p2 = poly[contour][poly[contour].size() - 1]; } else if ( min_node_index == (int)(poly[contour].size()) - 1 ) { p1 = poly[contour][0]; p2 = poly[contour][poly[contour].size() - 2]; } else { p1 = poly[contour][min_node_index - 1]; p2 = poly[contour][min_node_index + 1]; } p1_index = trinodes.find( p1 ); p2_index = trinodes.find( p2 ); double s1 = fabs( slope(min, p1) ); double s2 = fabs( slope(min, p2) ); if ( s1 < s2 ) { ln_index = p1_index; ln = p1; } else { ln_index = p2_index; ln = p2; } FGTriSeg base_leg( min_index, ln_index ); m.setx( (min.x() + ln.x()) / 2.0 ); m.sety( (min.y() + ln.y()) / 2.0 ); cout << "low mid point = " << m << endl; // 3. intersect vertical line through m and all other segments of // all other contours of this polygon. save point, p3, with // smallest y > m.y p3.sety(100); for ( int i = 0; i < (int)poly.size(); ++i ) { cout << "contour = " << i << " size = " << poly[i].size() << endl; for ( int j = 0; j < (int)(poly[i].size() - 1); ++j ) { // cout << " p1 = " << poly[i][j] << " p2 = " // << poly[i][j+1] << endl; p1 = poly[i][j]; p2 = poly[i][j+1]; p1_index = trinodes.find( p1 ); p2_index = trinodes.find( p2 ); if ( intersects(p1, p2, m.x(), &result) ) { cout << "intersection = " << result << endl; if ( ( result.y() < p3.y() ) && ( result.y() > m.y() ) && ( base_leg != FGTriSeg(p1_index, p2_index) ) ) { p3 = result; } } } // cout << " p1 = " << poly[i][0] << " p2 = " // << poly[i][poly[i].size() - 1] << endl; p1 = poly[i][0]; p2 = poly[i][poly[i].size() - 1]; p1_index = trinodes.find( p1 ); p2_index = trinodes.find( p2 ); if ( intersects(p1, p2, m.x(), &result) ) { cout << "intersection = " << result << endl; if ( ( result.y() < p3.y() ) && ( result.y() > m.y() ) && ( base_leg != FGTriSeg(p1_index, p2_index) ) ) { p3 = result; } } } if ( p3.y() < 100 ) { cout << "low intersection of other segment = " << p3 << endl; inside_list[contour].setx( (m.x() + p3.x()) / 2.0 ); inside_list[contour].sety( (m.y() + p3.y()) / 2.0 ); } else { cout << "Error: Failed to find a point inside :-(" << endl; inside_list[contour] = p3; // exit(-1); } // 4. take midpoint of p2 && m as an arbitrary point inside polygon cout << "inside point = " << inside_list[contour] << endl; } // return the perimeter of a contour (assumes simple polygons, // i.e. non-self intersecting.) double FGPolygon::area_contour( const int contour ) { // area = 1/2 * sum[i = 0 to k-1][x(i)*y(i+1) - x(i+1)*y(i)] // where k is defined as 0 point_list c = poly[contour]; int size = c.size(); double sum = 0.0; for ( int i = 0; i < size; ++i ) { sum += c[(i+1)%size].x() * c[i].y() - c[i].x() * c[(i+1)%size].y(); } // area can be negative or positive depending on the polygon // winding order return fabs(sum / 2.0); } // return the smallest interior angle of the polygon double FGPolygon::minangle_contour( const int contour ) { point_list c = poly[contour]; int size = c.size(); int p1_index, p2_index, p3_index; point2d p1, p2, p3; double angle; double min_angle = 2.0 * FG_PI; for ( int i = 0; i < size; ++i ) { p1_index = i - 1; if ( p1_index < 0 ) { p1_index += size; } p2_index = i; p3_index = i + 1; if ( p3_index >= size ) { p3_index -= size; } p1.x = c[p1_index].x(); p1.y = c[p1_index].y(); p2.x = c[p2_index].x(); p2.y = c[p2_index].y(); p3.x = c[p3_index].x(); p3.y = c[p3_index].y(); angle = calc_angle( p1, p2, p3 ); if ( angle < min_angle ) { min_angle = angle; } } return min_angle; } // output void FGPolygon::write( const string& file ) { FILE *fp = fopen( file.c_str(), "w" ); for ( int i = 0; i < (int)poly.size(); ++i ) { for ( int j = 0; j < (int)poly[i].size(); ++j ) { fprintf(fp, "%.6f %.6f\n", poly[i][j].x(), poly[i][j].y()); } fprintf(fp, "%.6f %.6f\n", poly[i][0].x(), poly[i][0].y()); } fclose(fp); } // // wrapper functions for gpc polygon clip routines // // Make a gpc_poly from an FGPolygon void make_gpc_poly( const FGPolygon& in, gpc_polygon *out ) { gpc_vertex_list v_list; v_list.num_vertices = 0; v_list.vertex = new gpc_vertex[FG_MAX_VERTICES]; // cout << "making a gpc_poly" << endl; // cout << " input contours = " << in.contours() << endl; Point3D p; // build the gpc_polygon structures for ( int i = 0; i < in.contours(); ++i ) { // cout << " contour " << i << " = " << in.contour_size( i ) << endl; for ( int j = 0; j < in.contour_size( i ); ++j ) { p = in.get_pt( i, j ); v_list.vertex[j].x = p.x(); v_list.vertex[j].y = p.y(); } v_list.num_vertices = in.contour_size( i ); gpc_add_contour( out, &v_list, in.get_hole_flag( i ) ); } // free alocated memory delete v_list.vertex; } // Set operation type typedef enum { POLY_DIFF, // Difference POLY_INT, // Intersection POLY_XOR, // Exclusive or POLY_UNION // Union } clip_op; // Generic clipping routine FGPolygon polygon_clip( clip_op poly_op, const FGPolygon& subject, const FGPolygon& clip ) { FGPolygon result; gpc_polygon *gpc_subject = new gpc_polygon; gpc_subject->num_contours = 0; gpc_subject->contour = NULL; gpc_subject->hole = NULL; make_gpc_poly( subject, gpc_subject ); gpc_polygon *gpc_clip = new gpc_polygon; gpc_clip->num_contours = 0; gpc_clip->contour = NULL; gpc_clip->hole = NULL; make_gpc_poly( clip, gpc_clip ); gpc_polygon *gpc_result = new gpc_polygon; gpc_result->num_contours = 0; gpc_result->contour = NULL; gpc_result->hole = NULL; gpc_op op; if ( poly_op == POLY_DIFF ) { op = GPC_DIFF; } else if ( poly_op == POLY_INT ) { op = GPC_INT; } else if ( poly_op == POLY_XOR ) { op = GPC_XOR; } else if ( poly_op == POLY_UNION ) { op = GPC_UNION; } else { cout << "Unknown polygon op, exiting." << endl; exit(-1); } gpc_polygon_clip( op, gpc_subject, gpc_clip, gpc_result ); for ( int i = 0; i < gpc_result->num_contours; ++i ) { // cout << " processing contour = " << i << ", nodes = " // << gpc_result->contour[i].num_vertices << ", hole = " // << gpc_result->hole[i] << endl; // sprintf(junkn, "g.%d", junkc++); // junkfp = fopen(junkn, "w"); for ( int j = 0; j < gpc_result->contour[i].num_vertices; j++ ) { Point3D p( gpc_result->contour[i].vertex[j].x, gpc_result->contour[i].vertex[j].y, 0 ); // junkp = in_nodes.get_node( index ); // fprintf(junkfp, "%.4f %.4f\n", junkp.x(), junkp.y()); result.add_node(i, p); // cout << " - " << index << endl; } // fprintf(junkfp, "%.4f %.4f\n", // gpc_result->contour[i].vertex[0].x, // gpc_result->contour[i].vertex[0].y); // fclose(junkfp); result.set_hole_flag( i, gpc_result->hole[i] ); } // free allocated memory gpc_free_polygon( gpc_subject ); gpc_free_polygon( gpc_clip ); gpc_free_polygon( gpc_result ); return result; } // Difference FGPolygon polygon_diff( const FGPolygon& subject, const FGPolygon& clip ) { return polygon_clip( POLY_DIFF, subject, clip ); } // Intersection FGPolygon polygon_int( const FGPolygon& subject, const FGPolygon& clip ) { return polygon_clip( POLY_INT, subject, clip ); } // Exclusive or FGPolygon polygon_xor( const FGPolygon& subject, const FGPolygon& clip ) { return polygon_clip( POLY_XOR, subject, clip ); } // Union FGPolygon polygon_union( const FGPolygon& subject, const FGPolygon& clip ) { return polygon_clip( POLY_UNION, subject, clip ); }