/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Module: FGOutput.cpp Author: Jon Berndt Date started: 12/02/98 Purpose: Manage output of sim parameters to file or stdout Called by: FGSimExec ------------- Copyright (C) 1999 Jon S. Berndt (jon@jsbsim.org) ------------- This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. Further information about the GNU Lesser General Public License can also be found on the world wide web at http://www.gnu.org. FUNCTIONAL DESCRIPTION -------------------------------------------------------------------------------- This is the place where you create output routines to dump data for perusal later. HISTORY -------------------------------------------------------------------------------- 12/02/98 JSB Created 11/09/07 HDW Added FlightGear Socket Interface %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% INCLUDES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ #include "FGOutput.h" #include "FGFDMExec.h" #include "FGAtmosphere.h" #include "FGFCS.h" #include "FGAerodynamics.h" #include "FGGroundReactions.h" #include "FGExternalReactions.h" #include "FGBuoyantForces.h" #include "FGAircraft.h" #include "FGMassBalance.h" #include "FGPropagate.h" #include "FGAuxiliary.h" #include "FGInertial.h" #include "FGPropulsion.h" #include "models/propulsion/FGEngine.h" #include "models/propulsion/FGTank.h" #include "models/propulsion/FGPiston.h" #include #include #include #include #if defined(WIN32) && !defined(__CYGWIN__) # include #else # include // htonl() ntohl() #endif static const int endianTest = 1; #define isLittleEndian (*((char *) &endianTest ) != 0) using namespace std; namespace JSBSim { static const char *IdSrc = "$Id: FGOutput.cpp,v 1.50 2010/11/18 12:38:06 jberndt Exp $"; static const char *IdHdr = ID_OUTPUT; // (stolen from FGFS native_fdm.cxx) // The function htond is defined this way due to the way some // processors and OSes treat floating point values. Some will raise // an exception whenever a "bad" floating point value is loaded into a // floating point register. Solaris is notorious for this, but then // so is LynxOS on the PowerPC. By translating the data in place, // there is no need to load a FP register with the "corruped" floating // point value. By doing the BIG_ENDIAN test, I can optimize the // routine for big-endian processors so it can be as efficient as // possible static void htond (double &x) { if ( isLittleEndian ) { int *Double_Overlay; int Holding_Buffer; Double_Overlay = (int *) &x; Holding_Buffer = Double_Overlay [0]; Double_Overlay [0] = htonl (Double_Overlay [1]); Double_Overlay [1] = htonl (Holding_Buffer); } else { return; } } // Float version static void htonf (float &x) { if ( isLittleEndian ) { int *Float_Overlay; int Holding_Buffer; Float_Overlay = (int *) &x; Holding_Buffer = Float_Overlay [0]; Float_Overlay [0] = htonl (Holding_Buffer); } else { return; } } /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% CLASS IMPLEMENTATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ FGOutput::FGOutput(FGFDMExec* fdmex) : FGModel(fdmex) { Name = "FGOutput"; sFirstPass = dFirstPass = true; socket = 0; runID_postfix = 0; Type = otNone; SubSystems = 0; enabled = true; StartNewFile = false; delimeter = ", "; BaseFilename = Filename = ""; DirectivesFile = ""; output_file_name = ""; memset(&fgSockBuf, 0x00, sizeof(fgSockBuf)); Debug(0); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FGOutput::~FGOutput() { delete socket; OutputProperties.clear(); Debug(1); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bool FGOutput::InitModel(void) { if (!FGModel::InitModel()) return false; if (Filename.size() > 0 && StartNewFile) { ostringstream buf; string::size_type dot = BaseFilename.find_last_of('.'); if (dot != string::npos) { buf << BaseFilename.substr(0, dot) << '_' << runID_postfix++ << BaseFilename.substr(dot); } else { buf << BaseFilename << '_' << runID_postfix++; } Filename = buf.str(); datafile.close(); StartNewFile = false; dFirstPass = true; } return true; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bool FGOutput::Run(void) { if (FGModel::Run()) return true; if (enabled && !FDMExec->IntegrationSuspended()&& !FDMExec->Holding()) { RunPreFunctions(); if (Type == otSocket) { SocketOutput(); } else if (Type == otFlightGear) { FlightGearSocketOutput(); } else if (Type == otCSV || Type == otTab) { DelimitedOutput(Filename); } else if (Type == otTerminal) { // Not done yet } else if (Type == otNone) { // Do nothing } else { // Not a valid type of output } RunPostFunctions(); } return false; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void FGOutput::SetType(const string& type) { if (type == "CSV") { Type = otCSV; delimeter = ", "; } else if (type == "TABULAR") { Type = otTab; delimeter = "\t"; } else if (type == "SOCKET") { Type = otSocket; } else if (type == "FLIGHTGEAR") { Type = otFlightGear; } else if (type == "TERMINAL") { Type = otTerminal; } else if (type != string("NONE")) { Type = otUnknown; cerr << "Unknown type of output specified in config file" << endl; } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void FGOutput::SetProtocol(const string& protocol) { if (protocol == "UDP") Protocol = FGfdmSocket::ptUDP; else if (protocol == "TCP") Protocol = FGfdmSocket::ptTCP; else Protocol = FGfdmSocket::ptTCP; // Default to TCP } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void FGOutput::DelimitedOutput(const string& fname) { const FGAerodynamics* Aerodynamics = FDMExec->GetAerodynamics(); const FGAuxiliary* Auxiliary = FDMExec->GetAuxiliary(); const FGAircraft* Aircraft = FDMExec->GetAircraft(); const FGAtmosphere* Atmosphere = FDMExec->GetAtmosphere(); const FGPropulsion* Propulsion = FDMExec->GetPropulsion(); const FGMassBalance* MassBalance = FDMExec->GetMassBalance(); const FGPropagate* Propagate = FDMExec->GetPropagate(); const FGFCS* FCS = FDMExec->GetFCS(); const FGInertial* Inertial = FDMExec->GetInertial(); const FGGroundReactions* GroundReactions = FDMExec->GetGroundReactions(); const FGExternalReactions* ExternalReactions = FDMExec->GetExternalReactions(); const FGBuoyantForces* BuoyantForces = FDMExec->GetBuoyantForces(); streambuf* buffer; string scratch = ""; if (fname == "COUT" || fname == "cout") { buffer = cout.rdbuf(); } else { if (!datafile.is_open()) datafile.open(fname.c_str()); buffer = datafile.rdbuf(); } ostream outstream(buffer); outstream.precision(10); if (dFirstPass) { outstream << "Time"; if (SubSystems & ssSimulation) { // Nothing here, yet } if (SubSystems & ssAerosurfaces) { outstream << delimeter; outstream << "Aileron Command (norm)" + delimeter; outstream << "Elevator Command (norm)" + delimeter; outstream << "Rudder Command (norm)" + delimeter; outstream << "Flap Command (norm)" + delimeter; outstream << "Left Aileron Position (deg)" + delimeter; outstream << "Right Aileron Position (deg)" + delimeter; outstream << "Elevator Position (deg)" + delimeter; outstream << "Rudder Position (deg)" + delimeter; outstream << "Flap Position (deg)"; } if (SubSystems & ssRates) { outstream << delimeter; outstream << "P (deg/s)" + delimeter + "Q (deg/s)" + delimeter + "R (deg/s)" + delimeter; outstream << "P dot (deg/s^2)" + delimeter + "Q dot (deg/s^2)" + delimeter + "R dot (deg/s^2)" + delimeter; outstream << "P_{inertial} (deg/s)" + delimeter + "Q_{inertial} (deg/s)" + delimeter + "R_{inertial} (deg/s)"; } if (SubSystems & ssVelocities) { outstream << delimeter; outstream << "q bar (psf)" + delimeter; outstream << "Reynolds Number" + delimeter; outstream << "V_{Total} (ft/s)" + delimeter; outstream << "V_{Inertial} (ft/s)" + delimeter; outstream << "UBody" + delimeter + "VBody" + delimeter + "WBody" + delimeter; outstream << "Aero V_{X Body} (ft/s)" + delimeter + "Aero V_{Y Body} (ft/s)" + delimeter + "Aero V_{Z Body} (ft/s)" + delimeter; outstream << "V_{X_{inertial}} (ft/s)" + delimeter + "V_{Y_{inertial}} (ft/s)" + delimeter + "V_{Z_{inertial}} (ft/s)" + delimeter; outstream << "V_{North} (ft/s)" + delimeter + "V_{East} (ft/s)" + delimeter + "V_{Down} (ft/s)"; } if (SubSystems & ssForces) { outstream << delimeter; outstream << "F_{Drag} (lbs)" + delimeter + "F_{Side} (lbs)" + delimeter + "F_{Lift} (lbs)" + delimeter; outstream << "L/D" + delimeter; outstream << "F_{Aero x} (lbs)" + delimeter + "F_{Aero y} (lbs)" + delimeter + "F_{Aero z} (lbs)" + delimeter; outstream << "F_{Prop x} (lbs)" + delimeter + "F_{Prop y} (lbs)" + delimeter + "F_{Prop z} (lbs)" + delimeter; outstream << "F_{Gear x} (lbs)" + delimeter + "F_{Gear y} (lbs)" + delimeter + "F_{Gear z} (lbs)" + delimeter; outstream << "F_{Ext x} (lbs)" + delimeter + "F_{Ext y} (lbs)" + delimeter + "F_{Ext z} (lbs)" + delimeter; outstream << "F_{Buoyant x} (lbs)" + delimeter + "F_{Buoyant y} (lbs)" + delimeter + "F_{Buoyant z} (lbs)" + delimeter; outstream << "F_{Total x} (lbs)" + delimeter + "F_{Total y} (lbs)" + delimeter + "F_{Total z} (lbs)"; } if (SubSystems & ssMoments) { outstream << delimeter; outstream << "L_{Aero} (ft-lbs)" + delimeter + "M_{Aero} ( ft-lbs)" + delimeter + "N_{Aero} (ft-lbs)" + delimeter; outstream << "L_{Prop} (ft-lbs)" + delimeter + "M_{Prop} (ft-lbs)" + delimeter + "N_{Prop} (ft-lbs)" + delimeter; outstream << "L_{Gear} (ft-lbs)" + delimeter + "M_{Gear} (ft-lbs)" + delimeter + "N_{Gear} (ft-lbs)" + delimeter; outstream << "L_{ext} (ft-lbs)" + delimeter + "M_{ext} (ft-lbs)" + delimeter + "N_{ext} (ft-lbs)" + delimeter; outstream << "L_{Buoyant} (ft-lbs)" + delimeter + "M_{Buoyant} (ft-lbs)" + delimeter + "N_{Buoyant} (ft-lbs)" + delimeter; outstream << "L_{Total} (ft-lbs)" + delimeter + "M_{Total} (ft-lbs)" + delimeter + "N_{Total} (ft-lbs)"; } if (SubSystems & ssAtmosphere) { outstream << delimeter; outstream << "Rho (slugs/ft^3)" + delimeter; outstream << "Absolute Viscosity" + delimeter; outstream << "Kinematic Viscosity" + delimeter; outstream << "Temperature (R)" + delimeter; outstream << "P_{SL} (psf)" + delimeter; outstream << "P_{Ambient} (psf)" + delimeter; outstream << "Turbulence Magnitude (ft/sec)" + delimeter; outstream << "Turbulence X Direction (rad)" + delimeter + "Turbulence Y Direction (rad)" + delimeter + "Turbulence Z Direction (rad)" + delimeter; outstream << "Wind V_{North} (ft/s)" + delimeter + "Wind V_{East} (ft/s)" + delimeter + "Wind V_{Down} (ft/s)"; } if (SubSystems & ssMassProps) { outstream << delimeter; outstream << "I_{xx}" + delimeter; outstream << "I_{xy}" + delimeter; outstream << "I_{xz}" + delimeter; outstream << "I_{yx}" + delimeter; outstream << "I_{yy}" + delimeter; outstream << "I_{yz}" + delimeter; outstream << "I_{zx}" + delimeter; outstream << "I_{zy}" + delimeter; outstream << "I_{zz}" + delimeter; outstream << "Mass" + delimeter; outstream << "X_{cg}" + delimeter + "Y_{cg}" + delimeter + "Z_{cg}"; } if (SubSystems & ssPropagate) { outstream << delimeter; outstream << "Altitude ASL (ft)" + delimeter; outstream << "Altitude AGL (ft)" + delimeter; outstream << "Phi (deg)" + delimeter + "Theta (deg)" + delimeter + "Psi (deg)" + delimeter; outstream << "Alpha (deg)" + delimeter; outstream << "Beta (deg)" + delimeter; outstream << "Latitude (deg)" + delimeter; outstream << "Longitude (deg)" + delimeter; outstream << "X_{ECI} (ft)" + delimeter + "Y_{ECI} (ft)" + delimeter + "Z_{ECI} (ft)" + delimeter; outstream << "X_{ECEF} (ft)" + delimeter + "Y_{ECEF} (ft)" + delimeter + "Z_{ECEF} (ft)" + delimeter; outstream << "Earth Position Angle (deg)" + delimeter; outstream << "Distance AGL (ft)" + delimeter; outstream << "Terrain Elevation (ft)"; } if (SubSystems & ssCoefficients) { scratch = Aerodynamics->GetCoefficientStrings(delimeter); if (scratch.length() != 0) outstream << delimeter << scratch; } if (SubSystems & ssFCS) { scratch = FCS->GetComponentStrings(delimeter); if (scratch.length() != 0) outstream << delimeter << scratch; } if (SubSystems & ssGroundReactions) { outstream << delimeter; outstream << GroundReactions->GetGroundReactionStrings(delimeter); } if (SubSystems & ssPropulsion && Propulsion->GetNumEngines() > 0) { outstream << delimeter; outstream << Propulsion->GetPropulsionStrings(delimeter); } if (OutputProperties.size() > 0) { for (unsigned int i=0;iGetPrintableName(); } } outstream << endl; dFirstPass = false; } outstream << FDMExec->GetSimTime(); if (SubSystems & ssSimulation) { } if (SubSystems & ssAerosurfaces) { outstream << delimeter; outstream << FCS->GetDaCmd() << delimeter; outstream << FCS->GetDeCmd() << delimeter; outstream << FCS->GetDrCmd() << delimeter; outstream << FCS->GetDfCmd() << delimeter; outstream << FCS->GetDaLPos(ofDeg) << delimeter; outstream << FCS->GetDaRPos(ofDeg) << delimeter; outstream << FCS->GetDePos(ofDeg) << delimeter; outstream << FCS->GetDrPos(ofDeg) << delimeter; outstream << FCS->GetDfPos(ofDeg); } if (SubSystems & ssRates) { outstream << delimeter; outstream << (radtodeg*Propagate->GetPQR()).Dump(delimeter) << delimeter; outstream << (radtodeg*Propagate->GetPQRdot()).Dump(delimeter) << delimeter; outstream << (radtodeg*Propagate->GetPQRi()).Dump(delimeter); } if (SubSystems & ssVelocities) { outstream << delimeter; outstream << Auxiliary->Getqbar() << delimeter; outstream << Auxiliary->GetReynoldsNumber() << delimeter; outstream << setprecision(12) << Auxiliary->GetVt() << delimeter; outstream << Propagate->GetInertialVelocityMagnitude() << delimeter; outstream << setprecision(12) << Propagate->GetUVW().Dump(delimeter) << delimeter; outstream << Auxiliary->GetAeroUVW().Dump(delimeter) << delimeter; outstream << Propagate->GetInertialVelocity().Dump(delimeter) << delimeter; outstream << Propagate->GetVel().Dump(delimeter); outstream.precision(10); } if (SubSystems & ssForces) { outstream << delimeter; outstream << Aerodynamics->GetvFw().Dump(delimeter) << delimeter; outstream << Aerodynamics->GetLoD() << delimeter; outstream << Aerodynamics->GetForces().Dump(delimeter) << delimeter; outstream << Propulsion->GetForces().Dump(delimeter) << delimeter; outstream << GroundReactions->GetForces().Dump(delimeter) << delimeter; outstream << ExternalReactions->GetForces().Dump(delimeter) << delimeter; outstream << BuoyantForces->GetForces().Dump(delimeter) << delimeter; outstream << Aircraft->GetForces().Dump(delimeter); } if (SubSystems & ssMoments) { outstream << delimeter; outstream << Aerodynamics->GetMoments().Dump(delimeter) << delimeter; outstream << Propulsion->GetMoments().Dump(delimeter) << delimeter; outstream << GroundReactions->GetMoments().Dump(delimeter) << delimeter; outstream << ExternalReactions->GetMoments().Dump(delimeter) << delimeter; outstream << BuoyantForces->GetMoments().Dump(delimeter) << delimeter; outstream << Aircraft->GetMoments().Dump(delimeter); } if (SubSystems & ssAtmosphere) { outstream << delimeter; outstream << Atmosphere->GetDensity() << delimeter; outstream << Atmosphere->GetAbsoluteViscosity() << delimeter; outstream << Atmosphere->GetKinematicViscosity() << delimeter; outstream << Atmosphere->GetTemperature() << delimeter; outstream << Atmosphere->GetPressureSL() << delimeter; outstream << Atmosphere->GetPressure() << delimeter; outstream << Atmosphere->GetTurbMagnitude() << delimeter; outstream << Atmosphere->GetTurbDirection().Dump(delimeter) << delimeter; outstream << Atmosphere->GetTotalWindNED().Dump(delimeter); } if (SubSystems & ssMassProps) { outstream << delimeter; outstream << MassBalance->GetJ().Dump(delimeter) << delimeter; outstream << MassBalance->GetMass() << delimeter; outstream << MassBalance->GetXYZcg().Dump(delimeter); } if (SubSystems & ssPropagate) { outstream.precision(14); outstream << delimeter; outstream << Propagate->GetAltitudeASL() << delimeter; outstream << Propagate->GetDistanceAGL() << delimeter; outstream << (radtodeg*Propagate->GetEuler()).Dump(delimeter) << delimeter; outstream << Auxiliary->Getalpha(inDegrees) << delimeter; outstream << Auxiliary->Getbeta(inDegrees) << delimeter; outstream << Propagate->GetLocation().GetLatitudeDeg() << delimeter; outstream << Propagate->GetLocation().GetLongitudeDeg() << delimeter; outstream.precision(18); outstream << ((FGColumnVector3)Propagate->GetInertialPosition()).Dump(delimeter) << delimeter; outstream << ((FGColumnVector3)Propagate->GetLocation()).Dump(delimeter) << delimeter; outstream.precision(14); outstream << Inertial->GetEarthPositionAngleDeg() << delimeter; outstream << Propagate->GetDistanceAGL() << delimeter; outstream << Propagate->GetTerrainElevation(); outstream.precision(10); } if (SubSystems & ssCoefficients) { scratch = Aerodynamics->GetCoefficientValues(delimeter); if (scratch.length() != 0) outstream << delimeter << scratch; } if (SubSystems & ssFCS) { scratch = FCS->GetComponentValues(delimeter); if (scratch.length() != 0) outstream << delimeter << scratch; } if (SubSystems & ssGroundReactions) { outstream << delimeter; outstream << GroundReactions->GetGroundReactionValues(delimeter); } if (SubSystems & ssPropulsion && Propulsion->GetNumEngines() > 0) { outstream << delimeter; outstream << Propulsion->GetPropulsionValues(delimeter); } outstream.precision(18); for (unsigned int i=0;igetDoubleValue(); } outstream.precision(10); outstream << endl; outstream.flush(); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void FGOutput::SocketDataFill(FGNetFDM* net) { const FGAerodynamics* Aerodynamics = FDMExec->GetAerodynamics(); const FGAuxiliary* Auxiliary = FDMExec->GetAuxiliary(); const FGPropulsion* Propulsion = FDMExec->GetPropulsion(); const FGMassBalance* MassBalance = FDMExec->GetMassBalance(); const FGPropagate* Propagate = FDMExec->GetPropagate(); const FGFCS* FCS = FDMExec->GetFCS(); const FGGroundReactions* GroundReactions = FDMExec->GetGroundReactions(); unsigned int i; // Version net->version = FG_NET_FDM_VERSION; // Positions net->longitude = Propagate->GetLocation().GetLongitude(); // geodetic (radians) net->latitude = Propagate->GetLocation().GetLatitude(); // geodetic (radians) net->altitude = Propagate->GetAltitudeASL()*0.3048; // altitude, above sea level (meters) net->agl = (float)(Propagate->GetDistanceAGL()*0.3048); // altitude, above ground level (meters) net->phi = (float)(Propagate->GetEuler(ePhi)); // roll (radians) net->theta = (float)(Propagate->GetEuler(eTht)); // pitch (radians) net->psi = (float)(Propagate->GetEuler(ePsi)); // yaw or true heading (radians) net->alpha = (float)(Auxiliary->Getalpha()); // angle of attack (radians) net->beta = (float)(Auxiliary->Getbeta()); // side slip angle (radians) // Velocities net->phidot = (float)(Auxiliary->GetEulerRates(ePhi)); // roll rate (radians/sec) net->thetadot = (float)(Auxiliary->GetEulerRates(eTht)); // pitch rate (radians/sec) net->psidot = (float)(Auxiliary->GetEulerRates(ePsi)); // yaw rate (radians/sec) net->vcas = (float)(Auxiliary->GetVcalibratedFPS()); // VCAS, ft/sec net->climb_rate = (float)(Propagate->Gethdot()); // altitude rate, ft/sec net->v_north = (float)(Propagate->GetVel(eNorth)); // north vel in NED frame, fps net->v_east = (float)(Propagate->GetVel(eEast)); // east vel in NED frame, fps net->v_down = (float)(Propagate->GetVel(eDown)); // down vel in NED frame, fps //---ADD METHOD TO CALCULATE THESE TERMS--- net->v_wind_body_north = (float)(Propagate->GetVel(eNorth)); // north vel in NED relative to airmass, fps net->v_wind_body_east = (float)(Propagate->GetVel(eEast)); // east vel in NED relative to airmass, fps net->v_wind_body_down = (float)(Propagate->GetVel(eDown)); // down vel in NED relative to airmass, fps // Accelerations net->A_X_pilot = (float)(Auxiliary->GetPilotAccel(1)); // X body accel, ft/s/s net->A_Y_pilot = (float)(Auxiliary->GetPilotAccel(2)); // Y body accel, ft/s/s net->A_Z_pilot = (float)(Auxiliary->GetPilotAccel(3)); // Z body accel, ft/s/s // Stall net->stall_warning = 0.0; // 0.0 - 1.0 indicating the amount of stall net->slip_deg = (float)(Auxiliary->Getbeta(inDegrees)); // slip ball deflection, deg // Engine status net->num_engines = Propulsion->GetNumEngines(); // Number of valid engines for (i=0; inum_engines; i++) { if (Propulsion->GetEngine(i)->GetRunning()) net->eng_state[i] = 2; // Engine state running else if (Propulsion->GetEngine(i)->GetCranking()) net->eng_state[i] = 1; // Engine state cranking else net->eng_state[i] = 0; // Engine state off switch (Propulsion->GetEngine(i)->GetType()) { case (FGEngine::etRocket): break; case (FGEngine::etPiston): net->rpm[i] = (float)(((FGPiston *)Propulsion->GetEngine(i))->getRPM()); net->fuel_flow[i] = (float)(((FGPiston *)Propulsion->GetEngine(i))->getFuelFlow_gph()); net->fuel_px[i] = 0; // Fuel pressure, psi (N/A in current model) net->egt[i] = (float)(((FGPiston *)Propulsion->GetEngine(i))->GetEGT()); net->cht[i] = (float)(((FGPiston *)Propulsion->GetEngine(i))->getCylinderHeadTemp_degF()); net->mp_osi[i] = (float)(((FGPiston *)Propulsion->GetEngine(i))->getManifoldPressure_inHg()); net->oil_temp[i] = (float)(((FGPiston *)Propulsion->GetEngine(i))->getOilTemp_degF()); net->oil_px[i] = (float)(((FGPiston *)Propulsion->GetEngine(i))->getOilPressure_psi()); net->tit[i] = 0; // Turbine Inlet Temperature (N/A for piston) break; case (FGEngine::etTurbine): break; case (FGEngine::etTurboprop): break; case (FGEngine::etElectric): break; case (FGEngine::etUnknown): break; } } // Consumables net->num_tanks = Propulsion->GetNumTanks(); // Max number of fuel tanks for (i=0; inum_tanks; i++) { net->fuel_quantity[i] = (float)(((FGTank *)Propulsion->GetTank(i))->GetContents()); } // Gear status net->num_wheels = GroundReactions->GetNumGearUnits(); for (i=0; inum_wheels; i++) { net->wow[i] = GroundReactions->GetGearUnit(i)->GetWOW(); if (GroundReactions->GetGearUnit(i)->GetGearUnitDown()) net->gear_pos[i] = 1; //gear down, using FCS convention else net->gear_pos[i] = 0; //gear up, using FCS convention net->gear_steer[i] = (float)(GroundReactions->GetGearUnit(i)->GetSteerNorm()); net->gear_compression[i] = (float)(GroundReactions->GetGearUnit(i)->GetCompLen()); } // Environment net->cur_time = (long int)1234567890; // Friday, Feb 13, 2009, 23:31:30 UTC (not processed by FGFS anyway) net->warp = 0; // offset in seconds to unix time net->visibility = 25000.0; // visibility in meters (for env. effects) // Control surface positions (normalized values) net->elevator = (float)(FCS->GetDePos(ofNorm)); // Norm Elevator Pos, -- net->elevator_trim_tab = (float)(FCS->GetPitchTrimCmd()); // Norm Elev Trim Tab Pos, -- net->left_flap = (float)(FCS->GetDfPos(ofNorm)); // Norm Flap Pos, -- net->right_flap = (float)(FCS->GetDfPos(ofNorm)); // Norm Flap Pos, -- net->left_aileron = (float)(FCS->GetDaLPos(ofNorm)); // Norm L Aileron Pos, -- net->right_aileron = (float)(FCS->GetDaRPos(ofNorm)); // Norm R Aileron Pos, -- net->rudder = (float)(FCS->GetDrPos(ofNorm)); // Norm Rudder Pos, -- net->nose_wheel = (float)(FCS->GetDrPos(ofNorm)); // *** FIX *** Using Rudder Pos for NWS, -- net->speedbrake = (float)(FCS->GetDsbPos(ofNorm)); // Norm Speedbrake Pos, -- net->spoilers = (float)(FCS->GetDspPos(ofNorm)); // Norm Spoiler Pos, -- // Convert the net buffer to network format if ( isLittleEndian ) { net->version = htonl(net->version); htond(net->longitude); htond(net->latitude); htond(net->altitude); htonf(net->agl); htonf(net->phi); htonf(net->theta); htonf(net->psi); htonf(net->alpha); htonf(net->beta); htonf(net->phidot); htonf(net->thetadot); htonf(net->psidot); htonf(net->vcas); htonf(net->climb_rate); htonf(net->v_north); htonf(net->v_east); htonf(net->v_down); htonf(net->v_wind_body_north); htonf(net->v_wind_body_east); htonf(net->v_wind_body_down); htonf(net->A_X_pilot); htonf(net->A_Y_pilot); htonf(net->A_Z_pilot); htonf(net->stall_warning); htonf(net->slip_deg); for (i=0; inum_engines; ++i ) { net->eng_state[i] = htonl(net->eng_state[i]); htonf(net->rpm[i]); htonf(net->fuel_flow[i]); htonf(net->fuel_px[i]); htonf(net->egt[i]); htonf(net->cht[i]); htonf(net->mp_osi[i]); htonf(net->tit[i]); htonf(net->oil_temp[i]); htonf(net->oil_px[i]); } net->num_engines = htonl(net->num_engines); for (i=0; inum_tanks; ++i ) { htonf(net->fuel_quantity[i]); } net->num_tanks = htonl(net->num_tanks); for (i=0; inum_wheels; ++i ) { net->wow[i] = htonl(net->wow[i]); htonf(net->gear_pos[i]); htonf(net->gear_steer[i]); htonf(net->gear_compression[i]); } net->num_wheels = htonl(net->num_wheels); net->cur_time = htonl( net->cur_time ); net->warp = htonl( net->warp ); htonf(net->visibility); htonf(net->elevator); htonf(net->elevator_trim_tab); htonf(net->left_flap); htonf(net->right_flap); htonf(net->left_aileron); htonf(net->right_aileron); htonf(net->rudder); htonf(net->nose_wheel); htonf(net->speedbrake); htonf(net->spoilers); } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void FGOutput::FlightGearSocketOutput(void) { int length = sizeof(fgSockBuf); if (socket == NULL) return; if (!socket->GetConnectStatus()) return; SocketDataFill(&fgSockBuf); socket->Send((char *)&fgSockBuf, length); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void FGOutput::SocketOutput(void) { const FGAerodynamics* Aerodynamics = FDMExec->GetAerodynamics(); const FGAuxiliary* Auxiliary = FDMExec->GetAuxiliary(); const FGPropulsion* Propulsion = FDMExec->GetPropulsion(); const FGMassBalance* MassBalance = FDMExec->GetMassBalance(); const FGPropagate* Propagate = FDMExec->GetPropagate(); const FGFCS* FCS = FDMExec->GetFCS(); const FGAtmosphere* Atmosphere = FDMExec->GetAtmosphere(); const FGAircraft* Aircraft = FDMExec->GetAircraft(); const FGGroundReactions* GroundReactions = FDMExec->GetGroundReactions(); string asciiData, scratch; if (socket == NULL) return; if (!socket->GetConnectStatus()) return; socket->Clear(); if (sFirstPass) { socket->Clear(""); socket->Append("Time"); if (SubSystems & ssAerosurfaces) { socket->Append("Aileron Command"); socket->Append("Elevator Command"); socket->Append("Rudder Command"); socket->Append("Flap Command"); socket->Append("Left Aileron Position"); socket->Append("Right Aileron Position"); socket->Append("Elevator Position"); socket->Append("Rudder Position"); socket->Append("Flap Position"); } if (SubSystems & ssRates) { socket->Append("P"); socket->Append("Q"); socket->Append("R"); socket->Append("PDot"); socket->Append("QDot"); socket->Append("RDot"); } if (SubSystems & ssVelocities) { socket->Append("QBar"); socket->Append("Vtotal"); socket->Append("UBody"); socket->Append("VBody"); socket->Append("WBody"); socket->Append("UAero"); socket->Append("VAero"); socket->Append("WAero"); socket->Append("Vn"); socket->Append("Ve"); socket->Append("Vd"); } if (SubSystems & ssForces) { socket->Append("F_Drag"); socket->Append("F_Side"); socket->Append("F_Lift"); socket->Append("LoD"); socket->Append("Fx"); socket->Append("Fy"); socket->Append("Fz"); } if (SubSystems & ssMoments) { socket->Append("L"); socket->Append("M"); socket->Append("N"); } if (SubSystems & ssAtmosphere) { socket->Append("Rho"); socket->Append("SL pressure"); socket->Append("Ambient pressure"); socket->Append("Turbulence Magnitude"); socket->Append("Turbulence Direction X"); socket->Append("Turbulence Direction Y"); socket->Append("Turbulence Direction Z"); socket->Append("NWind"); socket->Append("EWind"); socket->Append("DWind"); } if (SubSystems & ssMassProps) { socket->Append("Ixx"); socket->Append("Ixy"); socket->Append("Ixz"); socket->Append("Iyx"); socket->Append("Iyy"); socket->Append("Iyz"); socket->Append("Izx"); socket->Append("Izy"); socket->Append("Izz"); socket->Append("Mass"); socket->Append("Xcg"); socket->Append("Ycg"); socket->Append("Zcg"); } if (SubSystems & ssPropagate) { socket->Append("Altitude"); socket->Append("Phi (deg)"); socket->Append("Tht (deg)"); socket->Append("Psi (deg)"); socket->Append("Alpha (deg)"); socket->Append("Beta (deg)"); socket->Append("Latitude (deg)"); socket->Append("Longitude (deg)"); } if (SubSystems & ssCoefficients) { scratch = Aerodynamics->GetCoefficientStrings(","); if (scratch.length() != 0) socket->Append(scratch); } if (SubSystems & ssFCS) { scratch = FCS->GetComponentStrings(","); if (scratch.length() != 0) socket->Append(scratch); } if (SubSystems & ssGroundReactions) { socket->Append(GroundReactions->GetGroundReactionStrings(",")); } if (SubSystems & ssPropulsion && Propulsion->GetNumEngines() > 0) { socket->Append(Propulsion->GetPropulsionStrings(",")); } if (OutputProperties.size() > 0) { for (unsigned int i=0;iAppend(OutputProperties[i]->GetPrintableName()); } } sFirstPass = false; socket->Send(); } socket->Clear(); socket->Append(FDMExec->GetSimTime()); if (SubSystems & ssAerosurfaces) { socket->Append(FCS->GetDaCmd()); socket->Append(FCS->GetDeCmd()); socket->Append(FCS->GetDrCmd()); socket->Append(FCS->GetDfCmd()); socket->Append(FCS->GetDaLPos()); socket->Append(FCS->GetDaRPos()); socket->Append(FCS->GetDePos()); socket->Append(FCS->GetDrPos()); socket->Append(FCS->GetDfPos()); } if (SubSystems & ssRates) { socket->Append(radtodeg*Propagate->GetPQR(eP)); socket->Append(radtodeg*Propagate->GetPQR(eQ)); socket->Append(radtodeg*Propagate->GetPQR(eR)); socket->Append(radtodeg*Propagate->GetPQRdot(eP)); socket->Append(radtodeg*Propagate->GetPQRdot(eQ)); socket->Append(radtodeg*Propagate->GetPQRdot(eR)); } if (SubSystems & ssVelocities) { socket->Append(Auxiliary->Getqbar()); socket->Append(Auxiliary->GetVt()); socket->Append(Propagate->GetUVW(eU)); socket->Append(Propagate->GetUVW(eV)); socket->Append(Propagate->GetUVW(eW)); socket->Append(Auxiliary->GetAeroUVW(eU)); socket->Append(Auxiliary->GetAeroUVW(eV)); socket->Append(Auxiliary->GetAeroUVW(eW)); socket->Append(Propagate->GetVel(eNorth)); socket->Append(Propagate->GetVel(eEast)); socket->Append(Propagate->GetVel(eDown)); } if (SubSystems & ssForces) { socket->Append(Aerodynamics->GetvFw()(eDrag)); socket->Append(Aerodynamics->GetvFw()(eSide)); socket->Append(Aerodynamics->GetvFw()(eLift)); socket->Append(Aerodynamics->GetLoD()); socket->Append(Aircraft->GetForces(eX)); socket->Append(Aircraft->GetForces(eY)); socket->Append(Aircraft->GetForces(eZ)); } if (SubSystems & ssMoments) { socket->Append(Aircraft->GetMoments(eL)); socket->Append(Aircraft->GetMoments(eM)); socket->Append(Aircraft->GetMoments(eN)); } if (SubSystems & ssAtmosphere) { socket->Append(Atmosphere->GetDensity()); socket->Append(Atmosphere->GetPressureSL()); socket->Append(Atmosphere->GetPressure()); socket->Append(Atmosphere->GetTurbMagnitude()); socket->Append(Atmosphere->GetTurbDirection().Dump(",")); socket->Append(Atmosphere->GetTotalWindNED().Dump(",")); } if (SubSystems & ssMassProps) { socket->Append(MassBalance->GetJ()(1,1)); socket->Append(MassBalance->GetJ()(1,2)); socket->Append(MassBalance->GetJ()(1,3)); socket->Append(MassBalance->GetJ()(2,1)); socket->Append(MassBalance->GetJ()(2,2)); socket->Append(MassBalance->GetJ()(2,3)); socket->Append(MassBalance->GetJ()(3,1)); socket->Append(MassBalance->GetJ()(3,2)); socket->Append(MassBalance->GetJ()(3,3)); socket->Append(MassBalance->GetMass()); socket->Append(MassBalance->GetXYZcg()(eX)); socket->Append(MassBalance->GetXYZcg()(eY)); socket->Append(MassBalance->GetXYZcg()(eZ)); } if (SubSystems & ssPropagate) { socket->Append(Propagate->GetAltitudeASL()); socket->Append(radtodeg*Propagate->GetEuler(ePhi)); socket->Append(radtodeg*Propagate->GetEuler(eTht)); socket->Append(radtodeg*Propagate->GetEuler(ePsi)); socket->Append(Auxiliary->Getalpha(inDegrees)); socket->Append(Auxiliary->Getbeta(inDegrees)); socket->Append(Propagate->GetLocation().GetLatitudeDeg()); socket->Append(Propagate->GetLocation().GetLongitudeDeg()); } if (SubSystems & ssCoefficients) { scratch = Aerodynamics->GetCoefficientValues(","); if (scratch.length() != 0) socket->Append(scratch); } if (SubSystems & ssFCS) { scratch = FCS->GetComponentValues(","); if (scratch.length() != 0) socket->Append(scratch); } if (SubSystems & ssGroundReactions) { socket->Append(GroundReactions->GetGroundReactionValues(",")); } if (SubSystems & ssPropulsion && Propulsion->GetNumEngines() > 0) { socket->Append(Propulsion->GetPropulsionValues(",")); } for (unsigned int i=0;iAppend(OutputProperties[i]->getDoubleValue()); } socket->Send(); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void FGOutput::SocketStatusOutput(const string& out_str) { string asciiData; if (socket == NULL) return; socket->Clear(); asciiData = string("") + out_str; socket->Append(asciiData.c_str()); socket->Send(); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bool FGOutput::Load(Element* element) { string parameter=""; string name=""; int OutRate = 0; unsigned int port; Element *property_element; string separator = "/"; if (!DirectivesFile.empty()) { // A directives filename from the command line overrides output_file_name = DirectivesFile; // one found in the config file. document = LoadXMLDocument(output_file_name); } else if (!element->GetAttributeValue("file").empty()) { output_file_name = FDMExec->GetRootDir() + element->GetAttributeValue("file"); document = LoadXMLDocument(output_file_name); } else { document = element; } if (!document) return false; name = FDMExec->GetRootDir() + document->GetAttributeValue("name"); SetType(document->GetAttributeValue("type")); Port = document->GetAttributeValue("port"); if (!Port.empty() && (Type == otSocket || Type == otFlightGear)) { port = atoi(Port.c_str()); SetProtocol(document->GetAttributeValue("protocol")); socket = new FGfdmSocket(name, port, Protocol); } else { BaseFilename = Filename = name; } if (!document->GetAttributeValue("rate").empty()) { OutRate = (int)document->GetAttributeValueAsNumber("rate"); } else { OutRate = 1; } if (document->FindElementValue("simulation") == string("ON")) SubSystems += ssSimulation; if (document->FindElementValue("aerosurfaces") == string("ON")) SubSystems += ssAerosurfaces; if (document->FindElementValue("rates") == string("ON")) SubSystems += ssRates; if (document->FindElementValue("velocities") == string("ON")) SubSystems += ssVelocities; if (document->FindElementValue("forces") == string("ON")) SubSystems += ssForces; if (document->FindElementValue("moments") == string("ON")) SubSystems += ssMoments; if (document->FindElementValue("atmosphere") == string("ON")) SubSystems += ssAtmosphere; if (document->FindElementValue("massprops") == string("ON")) SubSystems += ssMassProps; if (document->FindElementValue("position") == string("ON")) SubSystems += ssPropagate; if (document->FindElementValue("coefficients") == string("ON")) SubSystems += ssCoefficients; if (document->FindElementValue("ground_reactions") == string("ON")) SubSystems += ssGroundReactions; if (document->FindElementValue("fcs") == string("ON")) SubSystems += ssFCS; if (document->FindElementValue("propulsion") == string("ON")) SubSystems += ssPropulsion; property_element = document->FindElement("property"); while (property_element) { string property_str = property_element->GetDataLine(); FGPropertyManager* node = PropertyManager->GetNode(property_str); if (!node) { cerr << fgred << highint << endl << " No property by the name " << property_str << " has been defined. This property will " << endl << " not be logged. You should check your configuration file." << reset << endl; } else { OutputProperties.push_back(node); } property_element = document->FindNextElement("property"); } SetRate(OutRate); Debug(2); return true; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void FGOutput::SetRate(int rtHz) { rtHz = rtHz>1000?1000:(rtHz<0?0:rtHz); if (rtHz > 0) { rate = (int)(0.5 + 1.0/(FDMExec->GetDeltaT()*rtHz)); Enable(); } else { rate = 1; Disable(); } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // The bitmasked value choices are as follows: // unset: In this case (the default) JSBSim would only print // out the normally expected messages, essentially echoing // the config files as they are read. If the environment // variable is not set, debug_lvl is set to 1 internally // 0: This requests JSBSim not to output any messages // whatsoever. // 1: This value explicity requests the normal JSBSim // startup messages // 2: This value asks for a message to be printed out when // a class is instantiated // 4: When this value is set, a message is displayed when a // FGModel object executes its Run() method // 8: When this value is set, various runtime state variables // are printed out periodically // 16: When set various parameters are sanity checked and // a message is printed out when they go out of bounds void FGOutput::Debug(int from) { string scratch=""; if (debug_lvl <= 0) return; if (debug_lvl & 1) { // Standard console startup message output if (from == 0) { // Constructor } if (from == 2) { if (output_file_name.empty()) cout << " " << "Output parameters read inline" << endl; else cout << " Output parameters read from file: " << output_file_name << endl; if (Filename == "cout" || Filename == "COUT") { scratch = " Log output goes to screen console"; } else if (!Filename.empty()) { scratch = " Log output goes to file: " + Filename; } switch (Type) { case otCSV: cout << scratch << " in CSV format output at rate " << 1/(FDMExec->GetDeltaT()*rate) << " Hz" << endl; break; case otNone: default: cout << " No log output" << endl; break; } if (SubSystems & ssSimulation) cout << " Simulation parameters logged" << endl; if (SubSystems & ssAerosurfaces) cout << " Aerosurface parameters logged" << endl; if (SubSystems & ssRates) cout << " Rate parameters logged" << endl; if (SubSystems & ssVelocities) cout << " Velocity parameters logged" << endl; if (SubSystems & ssForces) cout << " Force parameters logged" << endl; if (SubSystems & ssMoments) cout << " Moments parameters logged" << endl; if (SubSystems & ssAtmosphere) cout << " Atmosphere parameters logged" << endl; if (SubSystems & ssMassProps) cout << " Mass parameters logged" << endl; if (SubSystems & ssCoefficients) cout << " Coefficient parameters logged" << endl; if (SubSystems & ssPropagate) cout << " Propagate parameters logged" << endl; if (SubSystems & ssGroundReactions) cout << " Ground parameters logged" << endl; if (SubSystems & ssFCS) cout << " FCS parameters logged" << endl; if (SubSystems & ssPropulsion) cout << " Propulsion parameters logged" << endl; if (OutputProperties.size() > 0) cout << " Properties logged:" << endl; for (unsigned int i=0;iGetName() << endl; } } } if (debug_lvl & 2 ) { // Instantiation/Destruction notification if (from == 0) cout << "Instantiated: FGOutput" << endl; if (from == 1) cout << "Destroyed: FGOutput" << endl; } if (debug_lvl & 4 ) { // Run() method entry print for FGModel-derived objects } if (debug_lvl & 8 ) { // Runtime state variables } if (debug_lvl & 16) { // Sanity checking } if (debug_lvl & 64) { if (from == 0) { // Constructor cout << IdSrc << endl; cout << IdHdr << endl; } } } }