/********************************************************************/ /* STRIPE: converting a polygonal model to triangle strips Francine Evans, 1996. SUNY @ Stony Brook Advisors: Steven Skiena and Amitabh Varshney */ /********************************************************************/ /*---------------------------------------------------------------------*/ /* STRIPE: ties.c This file will contain all the routines used to determine the next face if there is a tie */ /*---------------------------------------------------------------------*/ #include #include "polverts.h" #include "ties.h" #include "sturctsex.h" #include "triangulatex.h" #include "options.h" #include "common.h" #include "util.h" #define MAX_TIE 60 int ties_array[60]; int last = 0; void Clear_Ties() { /* Clear the buffer, because we do not have the tie any more that we had before */ last = 0; } void Add_Ties(int id) { /* We have a tie to add to the buffer */ ties_array[last++] = id; } int Alternate_Tie() { /* Alternate in what we choose to break the tie We are just alternating between the first and second thing that we found */ static int x = 0; register int t; t = ties_array[x]; x++; if (x == 2) x = 0; return t; } int Random_Tie() { /* Randomly choose the next face with which to break the tie */ register int num; num = rand(); while (num >= last) num = num/20; return (ties_array[num]); } int Look_Ahead(int id) { /* Look ahead at this face and save the minimum adjacency of all the faces that are adjacent to this face. */ return Min_Adj(id); } int Random_Look(int id[],int count) { /* We had a tie within a tie in the lookahead, break it randomly */ register int num; num = rand(); while (num >= count) num = num/20; return (id[num]); } int Look_Ahead_Tie() { /* Look ahead and find the face to go to that will give the least number of adjacencies */ int id[60],t,x,f=0,min = 60; for (x = 0; x < last; x++) { t = Look_Ahead(ties_array[x]); /* We have a tie */ if (t == min) id[f++] = ties_array[x]; if (t < min) { f = 0; min = t; id[f++] = ties_array[x]; } } /* No tie within the tie */ if ( f == 1) return id[0]; /* Or ties, but we are at the end of strips */ if (min == 0) return id[0]; return (Random_Look(id,f)); } int Sequential_Tri(int *index) { /* We have a triangle and need to break the ties at it. We will choose the edge that is sequential. There is definitely one since we know we have a triangle and that there is a tie and there are only 2 edges for the tie. */ int reversed, e1,e2,e3,output1,output2,output3,output4; /* e2 and e3 are the input edge to the triangle */ Last_Edge(&e1,&e2,&e3,0); if ((e2 == 0) && (e3 == 0)) /* Starting the strip, don't need to do this */ return ties_array[0]; /* For the 2 ties find the edge adjacent to face id */ reversed = Get_EdgeEx(&output1,&output2,index,ties_array[0],3,0,0); reversed = Get_EdgeEx(&output3,&output4,index,ties_array[1],3,0,0); if ((output1 == e3) || (output2 == e3)) return ties_array[0]; if ((output3 == e3) || (output4 == e3)) return ties_array[1]; printf("There is an error trying to break sequential triangle \n"); } int Sequential_Quad(int *index, int triangulate) { /* We have a quad that need to break its ties, we will try and choose a side that is sequential, otherwise use lookahead */ int reversed,output1,output2,x,e1,e2,e3; /* e2 and e3 are the input edge to the quad */ Last_Edge(&e1,&e2,&e3,0); /* No input edge */ if ((e2 == 0) && (e3 == 0)) return ties_array[0]; /* Go through the ties and see if there is a sequential one */ for (x = 0; x < last; x++) { reversed = Get_EdgeEx(&output1,&output2,index,ties_array[x],4,0,0); /* Partial and whole triangulation will have different requirements */ if (((output1 == e3) || (output2 == e3)) && (triangulate == PARTIAL)) return ties_array[x]; if (((output1 != e3) && (output1 != e2) && (output2 != e3) && (output2 != e2))) return ties_array[x]; } /* There was not a tie that was sequential */ return Look_Ahead_Tie(); } void Whole_Output(int in1,int in2, int *index, int size, int *out1, int *out2) { /* Used to sequentially break ties in the whole triangulation for polygons greater than 4 sides. We will find the output edge that is good for sequential triangulation. */ int half; /* Put the input edge first in the list */ Rearrange_IndexEx(index,size); if (!(EVEN(size))) { if (*(index) == in1) half = size/2 ; else half = size/2 +1; } else half = size/2; *out1 = *(index+half); *out2 = *(index+half+1); } int Sequential_Poly(int size, int *index, int triangulate) { /* We have a polygon of greater than 4 sides and wish to break the tie in the most sequential manner. */ int x,reversed,output1,output2,e1,e2,e3,saved1=-1,saved2=-1,output3,output4; /* e2 and e3 are the input edge to the quad */ Last_Edge(&e1,&e2,&e3,0); /* If we are using whole, find the output edge that is sequential */ if (triangulate == WHOLE) Whole_Output(e2,e3,index,size,&output3,&output4); /* No input edge */ if ((e2 == 0) && (e3 == 0)) return ties_array[0]; for (x = 0; x < last ; x++) { reversed = Get_EdgeEx(&output1,&output2,index,ties_array[x],size,0,0); /* Partial that can be removed in just one triangle */ if (((output1 == e3) || (output2 == e3)) && (triangulate == PARTIAL)) saved1 = ties_array[x]; /* Partial removed in more than one triangle */ if ((output1 != e3) && (output1 != e2) && (output2 != e3) && (output2 != e2) && (triangulate == PARTIAL) && (saved2 != -1)) saved2 = ties_array[x]; /* Whole is not so easy, since the whole polygon must be done. Given an input edge there is only one way to come out, approximately half way around the polygon. */ if (((output1 == output3) && (output2 == output4)) || ((output1 == output4) && (output2 == output3)) && (triangulate == WHOLE)) return ties_array[x]; } if (saved1 != -1) return saved1; if (saved2 != -1) return saved2; /* There was not a tie that was sequential */ return Look_Ahead_Tie(); } int Sequential_Tie(int face_id,int triangulate) { /* Break the tie by choosing the face that will not give us a swap and is sequential. If there is not one, then do the lookahead to break the tie. */ /* Separate into 3 cases for simplicity, if the current polygon has 3 sides, 4 sides or if the sides were greater. We can do the smaller cases faster, so that is why I separated the cases. */ ListHead *pListFace; PF_FACES face; /* Get the polygon with id face_id */ pListFace = PolFaces[face_id]; face = (PF_FACES) PeekList(pListFace,LISTHEAD,0); if (face->nPolSize == 3) return(Sequential_Tri(face->pPolygon)); if (face->nPolSize == 4) return(Sequential_Quad(face->pPolygon,triangulate)); else return(Sequential_Poly(face->nPolSize,face->pPolygon,triangulate)); } int Get_Next_Face(int t, int face_id, int triangulate) { /* Get the next face depending on what the user specified */ /* Did not have a tie, don't do anything */ if (last == 1) return(ties_array[0]); if (t == RANDOM) return Random_Tie(); if (t == ALTERNATE) return Alternate_Tie(); if (t == LOOK) return Look_Ahead_Tie(); if (t == SEQUENTIAL) return Sequential_Tie(face_id,triangulate); printf("Illegal option specified for ties, using first \n"); return (ties_array[0]); }