/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Module: FGMars.cpp Author: Jon Berndt Date started: 1/4/04 Purpose: Models the Martian atmosphere very simply Called by: FGFDMExec ------------- Copyright (C) 2004 Jon S. Berndt (jsb@hal-pc.org) ------------- This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. Further information about the GNU Lesser General Public License can also be found on the world wide web at http://www.gnu.org. FUNCTIONAL DESCRIPTION -------------------------------------------------------------------------------- Models the Martian atmosphere. HISTORY -------------------------------------------------------------------------------- 1/04/2004 JSB Created %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% COMMENTS, REFERENCES, and NOTES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% INCLUDES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ #include "FGMars.h" #include "FGState.h" namespace JSBSim { static const char *IdSrc = "$Id$"; static const char *IdHdr = ID_MARS; /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% CLASS IMPLEMENTATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ FGMars::FGMars(FGFDMExec* fdmex) : FGAtmosphere(fdmex) { Name = "FGMars"; Reng = 53.5 * 44.01; /* lastIndex = 0; h = 0.0; psiw = 0.0; MagnitudedAccelDt = MagnitudeAccel = Magnitude = 0.0; // turbType = ttNone; turbType = ttStandard; // turbType = ttBerndt; TurbGain = 0.0; TurbRate = 1.0; */ bind(); Debug(0); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% /* FGMars::~FGMars() { Debug(1); } */ //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bool FGMars::InitModel(void) { FGModel::InitModel(); Calculate(h); SLtemperature = intTemperature; SLpressure = intPressure; SLdensity = intDensity; SLsoundspeed = sqrt(SHRatio*Reng*intTemperature); rSLtemperature = 1.0/intTemperature; rSLpressure = 1.0/intPressure; rSLdensity = 1.0/intDensity; rSLsoundspeed = 1.0/SLsoundspeed; temperature = &intTemperature; pressure = &intPressure; density = &intDensity; useExternal=false; return true; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bool FGMars::Run(void) { if (FGModel::Run()) return true; if (FDMExec->Holding()) return false; //do temp, pressure, and density first if (!useExternal) { h = Propagate->Geth(); Calculate(h); } if (turbType != ttNone) { Turbulence(); vWindNED += vTurbulence; } if (vWindNED(1) != 0.0) psiw = atan2( vWindNED(2), vWindNED(1) ); if (psiw < 0) psiw += 2*M_PI; soundspeed = sqrt(SHRatio*Reng*(*temperature)); Debug(2); return false; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void FGMars::Calculate(double altitude) { //Calculate reftemp, refpress, and density // LIMIT the temperatures so they do not descend below absolute zero. if (altitude < 22960.0) { intTemperature = -25.68 - 0.000548*altitude; // Deg Fahrenheit } else { intTemperature = -10.34 - 0.001217*altitude; // Deg Fahrenheit } intPressure = 14.62*exp(-0.00003*altitude); // psf - 14.62 psf =~ 7 millibars intDensity = intPressure/(Reng*intTemperature); // slugs/ft^3 (needs deg R. as input //cout << "Atmosphere: h=" << altitude << " rho= " << intDensity << endl; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // square a value, but preserve the original sign static inline double square_signed (double value) { if (value < 0) return value * value * -1; else return value * value; } void FGMars::Turbulence(void) { switch (turbType) { case ttStandard: { vDirectiondAccelDt(eX) = 1 - 2.0*(double(rand())/double(RAND_MAX)); vDirectiondAccelDt(eY) = 1 - 2.0*(double(rand())/double(RAND_MAX)); vDirectiondAccelDt(eZ) = 1 - 2.0*(double(rand())/double(RAND_MAX)); MagnitudedAccelDt = 1 - 2.0*(double(rand())/double(RAND_MAX)) - Magnitude; // Scale the magnitude so that it moves // away from the peaks MagnitudedAccelDt = ((MagnitudedAccelDt - Magnitude) / (1 + fabs(Magnitude))); MagnitudeAccel += MagnitudedAccelDt*rate*TurbRate*State->Getdt(); Magnitude += MagnitudeAccel*rate*State->Getdt(); vDirectiondAccelDt.Normalize(); // deemphasise non-vertical forces vDirectiondAccelDt(eX) = square_signed(vDirectiondAccelDt(eX)); vDirectiondAccelDt(eY) = square_signed(vDirectiondAccelDt(eY)); vDirectionAccel += vDirectiondAccelDt*rate*TurbRate*State->Getdt(); vDirectionAccel.Normalize(); vDirection += vDirectionAccel*rate*State->Getdt(); vDirection.Normalize(); // Diminish turbulence within three wingspans // of the ground vTurbulence = TurbGain * Magnitude * vDirection; double HOverBMAC = Auxiliary->GetHOverBMAC(); if (HOverBMAC < 3.0) vTurbulence *= (HOverBMAC / 3.0) * (HOverBMAC / 3.0); vTurbulenceGrad = TurbGain*MagnitudeAccel * vDirection; vBodyTurbGrad = Propagate->GetTl2b()*vTurbulenceGrad; vTurbPQR(eP) = vBodyTurbGrad(eY)/Aircraft->GetWingSpan(); // if (Aircraft->GetHTailArm() != 0.0) // vTurbPQR(eQ) = vBodyTurbGrad(eZ)/Aircraft->GetHTailArm(); // else // vTurbPQR(eQ) = vBodyTurbGrad(eZ)/10.0; if (Aircraft->GetVTailArm()) vTurbPQR(eR) = vBodyTurbGrad(eX)/Aircraft->GetVTailArm(); else vTurbPQR(eR) = vBodyTurbGrad(eX)/10.0; // Clear the horizontal forces // actually felt by the plane, now // that we've used them to calculate // moments. vTurbulence(eX) = 0.0; vTurbulence(eY) = 0.0; break; } case ttBerndt: { vDirectiondAccelDt(eX) = 1 - 2.0*(double(rand())/double(RAND_MAX)); vDirectiondAccelDt(eY) = 1 - 2.0*(double(rand())/double(RAND_MAX)); vDirectiondAccelDt(eZ) = 1 - 2.0*(double(rand())/double(RAND_MAX)); MagnitudedAccelDt = 1 - 2.0*(double(rand())/double(RAND_MAX)) - Magnitude; MagnitudeAccel += MagnitudedAccelDt*rate*State->Getdt(); Magnitude += MagnitudeAccel*rate*State->Getdt(); vDirectiondAccelDt.Normalize(); vDirectionAccel += vDirectiondAccelDt*rate*State->Getdt(); vDirectionAccel.Normalize(); vDirection += vDirectionAccel*rate*State->Getdt(); // Diminish z-vector within two wingspans // of the ground double HOverBMAC = Auxiliary->GetHOverBMAC(); if (HOverBMAC < 2.0) vDirection(eZ) *= HOverBMAC / 2.0; vDirection.Normalize(); vTurbulence = TurbGain*Magnitude * vDirection; vTurbulenceGrad = TurbGain*MagnitudeAccel * vDirection; vBodyTurbGrad = Propagate->GetTl2b()*vTurbulenceGrad; vTurbPQR(eP) = vBodyTurbGrad(eY)/Aircraft->GetWingSpan(); if (Aircraft->GetHTailArm() != 0.0) vTurbPQR(eQ) = vBodyTurbGrad(eZ)/Aircraft->GetHTailArm(); else vTurbPQR(eQ) = vBodyTurbGrad(eZ)/10.0; if (Aircraft->GetVTailArm()) vTurbPQR(eR) = vBodyTurbGrad(eX)/Aircraft->GetVTailArm(); else vTurbPQR(eR) = vBodyTurbGrad(eX)/10.0; break; } default: break; } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% // The bitmasked value choices are as follows: // unset: In this case (the default) JSBSim would only print // out the normally expected messages, essentially echoing // the config files as they are read. If the environment // variable is not set, debug_lvl is set to 1 internally // 0: This requests JSBSim not to output any messages // whatsoever. // 1: This value explicity requests the normal JSBSim // startup messages // 2: This value asks for a message to be printed out when // a class is instantiated // 4: When this value is set, a message is displayed when a // FGModel object executes its Run() method // 8: When this value is set, various runtime state variables // are printed out periodically // 16: When set various parameters are sanity checked and // a message is printed out when they go out of bounds void FGMars::Debug(int from) { if (debug_lvl <= 0) return; if (debug_lvl & 1) { // Standard console startup message output if (from == 0) { // Constructor } } if (debug_lvl & 2 ) { // Instantiation/Destruction notification if (from == 0) cout << "Instantiated: FGMars" << endl; if (from == 1) cout << "Destroyed: FGMars" << endl; } if (debug_lvl & 4 ) { // Run() method entry print for FGModel-derived objects } if (debug_lvl & 8 ) { // Runtime state variables } if (debug_lvl & 16) { // Sanity checking } if (debug_lvl & 32) { // Turbulence if (first_pass && from == 2) { cout << "vTurbulence(X), vTurbulence(Y), vTurbulence(Z), " << "vTurbulenceGrad(X), vTurbulenceGrad(Y), vTurbulenceGrad(Z), " << "vDirection(X), vDirection(Y), vDirection(Z), " << "Magnitude, " << "vTurbPQR(P), vTurbPQR(Q), vTurbPQR(R), " << endl; } else if (from == 2) { cout << vTurbulence << ", " << vTurbulenceGrad << ", " << vDirection << ", " << Magnitude << ", " << vTurbPQR << endl; } } if (debug_lvl & 64) { if (from == 0) { // Constructor cout << IdSrc << endl; cout << IdHdr << endl; } } } } // namespace JSBSim