// -*- Mode: C++ -*- // // dem.c -- DEM management class // // Written by Curtis Olson, started March 1998. // // Copyright (C) 1998 Curtis L. Olson - curt@me.umn.edu // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. // // $Id$ // (Log is kept at end of this file) #include // isspace() #include // rint() #include #include // atoi() #include #include // stat() #include // stat() #include #include "dem.hxx" #include "leastsqs.hxx" #include #ifdef WIN32 # define MKDIR(a) mkdir(a,S_IRWXU) // I am just guessing at this flag (NHV) #endif // WIN32 fgDEM::fgDEM( void ) { // printf("class fgDEM CONstructor called.\n"); dem_data = new float[DEM_SIZE_1][DEM_SIZE_1]; output_data = new float[DEM_SIZE_1][DEM_SIZE_1]; } #ifdef WIN32 // return the file path name ( foo/bar/file.ext = foo/bar ) void extract_path (char *in, char *base) { int len, i; len = strlen (in); strcpy (base, in); i = len - 1; while ( (i >= 0) && (in[i] != '/') ) { i--; } base[i] = '\0'; } // Make a subdirectory int my_mkdir (char *dir) { struct stat stat_buf; int result; printf ("mk_dir() "); result = stat (dir, &stat_buf); if (result != 0) { MKDIR (dir); result = stat (dir, &stat_buf); if (result != 0) { printf ("problem creating %s\n", dir); } else { printf ("%s created\n", dir); } } else { printf ("%s already exists\n", dir); } return (result); } #endif // WIN32 // open a DEM file int fgDEM::open ( char *file ) { // open input file (or read from stdin) if ( strcmp(file, "-") == 0 ) { printf("Loading DEM data file: stdin\n"); // fd = stdin; fd = gzdopen(STDIN_FILENO, "r"); } else { if ( (fd = gzopen(file, "rb")) == NULL ) { printf("Cannot gzopen %s\n", file); return(0); } printf("Loading DEM data file: %s\n", file); } return(1); } // close a DEM file int fgDEM::close ( void ) { gzclose(fd); return(1); } // return next token from input stream static void next_token(gzFile fd, char *token) { int i, result; char c; i = 0; c = gzgetc(fd); // skip past spaces while ( (c != -1) && (c == ' ') ) { c = gzgetc(fd); } while ( (c != -1) && (c != ' ') && (c != '\n') ){ token[i] = c; i++; c = gzgetc(fd); } token[i] = '\0'; if ( c == -1 ) { strcpy(token, "__END_OF_FILE__"); printf(" Warning: Reached end of file!\n"); } // printf(" returning %s\n", token); } // return next integer from input stream static int next_int(gzFile fd) { char token[80]; next_token(fd, token); return ( atoi(token) ); } // return next double from input stream static double next_double(gzFile fd) { char token[80]; next_token(fd, token); return ( atof(token) ); } // return next exponential num from input stream static int next_exp(gzFile fd) { char token[80]; double mantissa; int exp, acc; int i; next_token(fd, token); sscanf(token, "%lfD%d", &mantissa, &exp); // printf(" Mantissa = %.4f Exp = %d\n", mantissa, exp); acc = 1; if ( exp > 0 ) { for ( i = 1; i <= exp; i++ ) { acc *= 10; } } else if ( exp < 0 ) { for ( i = -1; i >= exp; i-- ) { acc /= 10; } } return( (int)rint(mantissa * (double)acc) ); } // read and parse DEM "A" record void fgDEM::read_a_record( void ) { int i, inum; double dnum; char name[144]; char token[80]; char *ptr; // get the name field (144 characters) for ( i = 0; i < 144; i++ ) { name[i] = gzgetc(fd); } name[i+1] = '\0'; // clean off the whitespace at the end for ( i = strlen(name)-2; i > 0; i-- ) { if ( !isspace(name[i]) ) { i=0; } else { name[i] = '\0'; } } printf(" Quad name field: %s\n", name); // DEM level code, 3 reflects processing by DMA inum = next_int(fd); printf(" DEM level code = %d\n", inum); // Pattern code, 1 indicates a regular elevation pattern inum = next_int(fd); printf(" Pattern code = %d\n", inum); // Planimetric reference system code, 0 indicates geographic // coordinate system. inum = next_int(fd); printf(" Planimetric reference code = %d\n", inum); // Zone code inum = next_int(fd); printf(" Zone code = %d\n", inum); // Map projection parameters (ignored) for ( i = 0; i < 15; i++ ) { dnum = next_double(fd); // printf("%d: %f\n",i,dnum); } // Units code, 3 represents arc-seconds as the unit of measure for // ground planimetric coordinates throughout the file. inum = next_int(fd); if ( inum != 3 ) { printf(" Unknown (X,Y) units code = %d!\n", inum); exit(-1); } // Units code; 2 represents meters as the unit of measure for // elevation coordinates throughout the file. inum = next_int(fd); if ( inum != 2 ) { printf(" Unknown (Z) units code = %d!\n", inum); exit(-1); } // Number (n) of sides in the polygon which defines the coverage of // the DEM file (usually equal to 4). inum = next_int(fd); if ( inum != 4 ) { printf(" Unknown polygon dimension = %d!\n", inum); exit(-1); } // Ground coordinates of bounding box in arc-seconds dem_x1 = originx = next_exp(fd); dem_y1 = originy = next_exp(fd); printf(" Origin = (%.2f,%.2f)\n", originx, originy); dem_x2 = next_exp(fd); dem_y2 = next_exp(fd); dem_x3 = next_exp(fd); dem_y3 = next_exp(fd); dem_x4 = next_exp(fd); dem_y4 = next_exp(fd); // Minimum/maximum elevations in meters dem_z1 = next_exp(fd); dem_z2 = next_exp(fd); printf(" Elevation range %.4f %.4f\n", dem_z1, dem_z2); // Counterclockwise angle from the primary axis of ground // planimetric referenced to the primary axis of the DEM local // reference system. next_token(fd, token); // Accuracy code; 0 indicates that a record of accuracy does not // exist and that no record type C will follow. // DEM spacial resolution. Usually (3,3,1) (3,6,1) or (3,9,1) // depending on latitude // I will eventually have to do something with this for data at // higher latitudes */ next_token(fd, token); printf(" accuracy & spacial resolution string = %s\n", token); i = strlen(token); printf(" length = %d\n", i); ptr = token + i - 12; printf(" last field = %s = %.2f\n", ptr, atof(ptr)); ptr[0] = '\0'; ptr = ptr - 12; col_step = atof(ptr); printf(" last field = %s = %.2f\n", ptr, col_step); ptr[0] = '\0'; ptr = ptr - 12; row_step = atof(ptr); printf(" last field = %s = %.2f\n", ptr, row_step); ptr[0] = '\0'; // accuracy code = atod(token) inum = atoi(token); printf(" Accuracy code = %d\n", inum); printf(" column step = %.2f row step = %.2f\n", col_step, row_step); // dimension of arrays to follow (1) next_token(fd, token); // number of profiles dem_num_profiles = cols = next_int(fd); printf(" Expecting %d profiles\n", dem_num_profiles); } // read and parse DEM "B" record void fgDEM::read_b_record( void ) { char token[80]; int i; // row / column id of this profile prof_row = next_int(fd); prof_col = next_int(fd); // printf("col id = %d row id = %d\n", prof_col, prof_row); // Number of columns and rows (elevations) in this profile prof_num_rows = rows = next_int(fd); prof_num_cols = next_int(fd); // printf(" profile num rows = %d\n", prof_num_rows); // Ground planimetric coordinates (arc-seconds) of the first // elevation in the profile prof_x1 = next_exp(fd); prof_y1 = next_exp(fd); // printf(" Starting at %.2f %.2f\n", prof_x1, prof_y1); // Elevation of local datum for the profile. Always zero for // 1-degree DEM, the reference is mean sea level. next_token(fd, token); // Minimum and maximum elevations for the profile. next_token(fd, token); next_token(fd, token); // One (usually) dimensional array (prof_num_cols,1) of elevations for ( i = 0; i < prof_num_rows; i++ ) { prof_data = next_int(fd); dem_data[cur_col][i] = (float)prof_data; } } // parse dem file int fgDEM::parse( void ) { int i; cur_row = 0; read_a_record(); for ( i = 0; i < dem_num_profiles; i++ ) { // printf("Ready to read next b record\n"); read_b_record(); cur_col++; if ( cur_col % 100 == 0 ) { printf(" loaded %d profiles of data\n", cur_col); } } printf(" Done parsing\n"); return(0); } // return the current altitude based on mesh data. We should rewrite // this to interpolate exact values, but for now this is good enough double fgDEM::interpolate_altitude( double lon, double lat ) { // we expect incoming (lon,lat) to be in arcsec for now double xlocal, ylocal, dx, dy, zA, zB, elev; int x1, x2, x3, y1, y2, y3; float z1, z2, z3; int xindex, yindex; /* determine if we are in the lower triangle or the upper triangle ______ | /| | / | | / | |/ | ------ then calculate our end points */ xlocal = (lon - originx) / col_step; ylocal = (lat - originy) / row_step; xindex = (int)(xlocal); yindex = (int)(ylocal); // printf("xindex = %d yindex = %d\n", xindex, yindex); if ( xindex + 1 == cols ) { xindex--; } if ( yindex + 1 == rows ) { yindex--; } if ( (xindex < 0) || (xindex + 1 >= cols) || (yindex < 0) || (yindex + 1 >= rows) ) { return(-9999); } dx = xlocal - xindex; dy = ylocal - yindex; if ( dx > dy ) { // lower triangle // printf(" Lower triangle\n"); x1 = xindex; y1 = yindex; z1 = dem_data[x1][y1]; x2 = xindex + 1; y2 = yindex; z2 = dem_data[x2][y2]; x3 = xindex + 1; y3 = yindex + 1; z3 = dem_data[x3][y3]; // printf(" dx = %.2f dy = %.2f\n", dx, dy); // printf(" (x1,y1,z1) = (%d,%d,%d)\n", x1, y1, z1); // printf(" (x2,y2,z2) = (%d,%d,%d)\n", x2, y2, z2); // printf(" (x3,y3,z3) = (%d,%d,%d)\n", x3, y3, z3); zA = dx * (z2 - z1) + z1; zB = dx * (z3 - z1) + z1; // printf(" zA = %.2f zB = %.2f\n", zA, zB); if ( dx > FG_EPSILON ) { elev = dy * (zB - zA) / dx + zA; } else { elev = zA; } } else { // upper triangle // printf(" Upper triangle\n"); x1 = xindex; y1 = yindex; z1 = dem_data[x1][y1]; x2 = xindex; y2 = yindex + 1; z2 = dem_data[x2][y2]; x3 = xindex + 1; y3 = yindex + 1; z3 = dem_data[x3][y3]; // printf(" dx = %.2f dy = %.2f\n", dx, dy); // printf(" (x1,y1,z1) = (%d,%d,%d)\n", x1, y1, z1); // printf(" (x2,y2,z2) = (%d,%d,%d)\n", x2, y2, z2); // printf(" (x3,y3,z3) = (%d,%d,%d)\n", x3, y3, z3); zA = dy * (z2 - z1) + z1; zB = dy * (z3 - z1) + z1; // printf(" zA = %.2f zB = %.2f\n", zA, zB ); // printf(" xB - xA = %.2f\n", col_step * dy / row_step); if ( dy > FG_EPSILON ) { elev = dx * (zB - zA) / dy + zA; } else { elev = zA; } } return(elev); } // Use least squares to fit a simpler data set to dem data void fgDEM::fit( char *fg_root, double error, struct fgBUCKET *p ) { double x[DEM_SIZE_1], y[DEM_SIZE_1]; double m, b, ave_error, max_error; double cury, lasty; int n, row, start, end, good_fit; int colmin, colmax, rowmin, rowmax; // FILE *dem, *fit, *fit1; printf("Initializing output mesh structure\n"); outputmesh_init(); // determine dimensions colmin = p->x * ( (cols - 1) / 8); colmax = colmin + ( (cols - 1) / 8); rowmin = p->y * ( (rows - 1) / 8); rowmax = rowmin + ( (rows - 1) / 8); printf("Fitting region = %d,%d to %d,%d\n", colmin, rowmin, colmax, rowmax); // include the corners explicitly outputmesh_set_pt(colmin, rowmin, dem_data[colmin][rowmin]); outputmesh_set_pt(colmin, rowmax, dem_data[colmin][rowmax]); outputmesh_set_pt(colmax, rowmax, dem_data[colmax][rowmax]); outputmesh_set_pt(colmax, rowmin, dem_data[colmax][rowmin]); printf("Beginning best fit procedure\n"); for ( row = rowmin; row <= rowmax; row++ ) { // fit = fopen("fit.dat", "w"); // fit1 = fopen("fit1.dat", "w"); start = colmin; // printf(" fitting row = %d\n", row); while ( start < colmax ) { end = start + 1; good_fit = 1; x[(end - start) - 1] = 0.0 + ( start * col_step ); y[(end - start) - 1] = dem_data[start][row]; while ( (end <= colmax) && good_fit ) { n = (end - start) + 1; // printf("Least square of first %d points\n", n); x[end - start] = 0.0 + ( end * col_step ); y[end - start] = dem_data[end][row]; least_squares(x, y, n, &m, &b); ave_error = least_squares_error(x, y, n, m, b); max_error = least_squares_max_error(x, y, n, m, b); /* printf("%d - %d ave error = %.2f max error = %.2f y = %.2f*x + %.2f\n", start, end, ave_error, max_error, m, b); f = fopen("gnuplot.dat", "w"); for ( j = 0; j <= end; j++) { fprintf(f, "%.2f %.2f\n", 0.0 + ( j * col_step ), dem_data[row][j]); } for ( j = start; j <= end; j++) { fprintf(f, "%.2f %.2f\n", 0.0 + ( j * col_step ), dem_data[row][j]); } fclose(f); printf("Please hit return: "); gets(junk); */ if ( max_error > error ) { good_fit = 0; } end++; } if ( !good_fit ) { // error exceeded the threshold, back up end -= 2; // back "end" up to the last good enough fit n--; // back "n" up appropriately too } else { // we popped out of the above loop while still within // the error threshold, so we must be at the end of // the data set end--; } least_squares(x, y, n, &m, &b); ave_error = least_squares_error(x, y, n, m, b); max_error = least_squares_max_error(x, y, n, m, b); /* printf("\n"); printf("%d - %d ave error = %.2f max error = %.2f y = %.2f*x + %.2f\n", start, end, ave_error, max_error, m, b); printf("\n"); fprintf(fit1, "%.2f %.2f\n", x[0], m * x[0] + b); fprintf(fit1, "%.2f %.2f\n", x[end-start], m * x[end-start] + b); */ if ( start > colmin ) { // skip this for the first line segment cury = m * x[0] + b; outputmesh_set_pt(start, row, (lasty + cury) / 2); // fprintf(fit, "%.2f %.2f\n", x[0], (lasty + cury) / 2); } lasty = m * x[end-start] + b; start = end; } /* fclose(fit); fclose(fit1); dem = fopen("gnuplot.dat", "w"); for ( j = 0; j < DEM_SIZE_1; j++) { fprintf(dem, "%.2f %.2f\n", 0.0 + ( j * col_step ), dem_data[j][row]); } fclose(dem); */ // NOTICE, this is for testing only. This instance of // output_nodes should be removed. It should be called only // once at the end once all the nodes have been generated. // newmesh_output_nodes(&nm, "mesh.node"); // printf("Please hit return: "); gets(junk); } outputmesh_output_nodes(fg_root, p); } // Initialize output mesh structure void fgDEM::outputmesh_init( void ) { int i, j; for ( j = 0; j < DEM_SIZE_1; j++ ) { for ( i = 0; i < DEM_SIZE_1; i++ ) { output_data[i][j] = -9999.0; } } } // Get the value of a mesh node double fgDEM::outputmesh_get_pt( int i, int j ) { return ( output_data[i][j] ); } // Set the value of a mesh node void fgDEM::outputmesh_set_pt( int i, int j, double value ) { // printf("Setting data[%d][%d] = %.2f\n", i, j, value); output_data[i][j] = value; } // Write out a node file that can be used by the "triangle" program void fgDEM::outputmesh_output_nodes( char *fg_root, struct fgBUCKET *p ) { struct stat stat_buf; char base_path[256], dir[256], file[256]; #ifdef WIN32 char tmp_path[256]; #endif char command[256]; FILE *fd; long int index; int colmin, colmax, rowmin, rowmax; int i, j, count, result; // determine dimensions colmin = p->x * ( (cols - 1) / 8); colmax = colmin + ( (cols - 1) / 8); rowmin = p->y * ( (rows - 1) / 8); rowmax = rowmin + ( (rows - 1) / 8); printf(" dumping region = %d,%d to %d,%d\n", colmin, rowmin, colmax, rowmax); // generate the base directory fgBucketGenBasePath(p, base_path); printf("fg_root = %s Base Path = %s\n", fg_root, base_path); sprintf(dir, "%s/Scenery/%s", fg_root, base_path); printf("Dir = %s\n", dir); // stat() directory and create if needed result = stat(dir, &stat_buf); if ( result != 0 ) { printf("Stat error need to create directory\n"); #ifndef WIN32 sprintf(command, "mkdir -p %s\n", dir); system(command); #else // WIN32 // Cygwin crashes when trying to output to node file // explicitly making directory structure seems OK on Win95 extract_path (base_path, tmp_path); sprintf (dir, "%s/Scenery", fg_root); if (my_mkdir (dir)) { exit (-1); } sprintf (dir, "%s/Scenery/%s", fg_root, tmp_path); if (my_mkdir (dir)) { exit (-1); } sprintf (dir, "%s/Scenery/%s", fg_root, base_path); if (my_mkdir (dir)) { exit (-1); } #endif // WIN32 } else { // assume directory exists } // get index and generate output file name index = fgBucketGenIndex(p); sprintf(file, "%s/%ld.node", dir, index); printf("Creating node file: %s\n", file); fd = fopen(file, "w"); // first count nodes to generate header count = 0; for ( j = rowmin; j <= rowmax; j++ ) { for ( i = colmin; i <= colmax; i++ ) { if ( output_data[i][j] > -9000.0 ) { count++; } } // printf(" count = %d\n", count); } fprintf(fd, "%d 2 1 0\n", count); // now write out actual node data count = 1; for ( j = rowmin; j <= rowmax; j++ ) { for ( i = colmin; i <= colmax; i++ ) { if ( output_data[i][j] > -9000.0 ) { fprintf(fd, "%d %.2f %.2f %.2f\n", count++, originx + (double)i * col_step, originy + (double)j * row_step, output_data[i][j]); } } // printf(" count = %d\n", count); } fclose(fd); } fgDEM::~fgDEM( void ) { // printf("class fgDEM DEstructor called.\n"); } // $Log$ // Revision 1.5 1998/04/25 15:00:32 curt // Changed "r" to "rb" in gzopen() options. This fixes bad behavior in win32. // // Revision 1.4 1998/04/22 13:14:46 curt // Fixed a bug in zlib usage. // // Revision 1.3 1998/04/18 03:53:05 curt // Added zlib support. // // Revision 1.2 1998/04/14 02:43:27 curt // Used "new" to auto-allocate large DEM parsing arrays in class constructor. // // Revision 1.1 1998/04/08 22:57:22 curt // Adopted Gnu automake/autoconf system. // // Revision 1.3 1998/04/06 21:09:41 curt // Additional win32 support. // Fixed a bad bug in dem file parsing that was causing the output to be // flipped about x = y. // // Revision 1.2 1998/03/23 20:35:41 curt // Updated to use FG_EPSILON // // Revision 1.1 1998/03/19 02:54:47 curt // Reorganized into a class lib called fgDEM. // // Revision 1.1 1998/03/19 01:46:28 curt // Initial revision. //