// groundcache.cxx -- carries a small subset of the scenegraph near the vehicle // // Written by Mathias Froehlich, started Nov 2004. // // Copyright (C) 2004 Mathias Froehlich - Mathias.Froehlich@web.de // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. // // $Id$ #ifdef HAVE_CONFIG_H # include "config.h" #endif #include #include #include #include #include #include #include
#include #include #include #include "flight.hxx" #include "groundcache.hxx" // Specialized version of sgMultMat4 needed because of mixed matrix // types static inline void fgMultMat4(sgdMat4 dst, sgdMat4 m1, sgMat4 m2) { for ( int j = 0 ; j < 4 ; j++ ) { dst[0][j] = m2[0][0] * m1[0][j] + m2[0][1] * m1[1][j] + m2[0][2] * m1[2][j] + m2[0][3] * m1[3][j] ; dst[1][j] = m2[1][0] * m1[0][j] + m2[1][1] * m1[1][j] + m2[1][2] * m1[2][j] + m2[1][3] * m1[3][j] ; dst[2][j] = m2[2][0] * m1[0][j] + m2[2][1] * m1[1][j] + m2[2][2] * m1[2][j] + m2[2][3] * m1[3][j] ; dst[3][j] = m2[3][0] * m1[0][j] + m2[3][1] * m1[1][j] + m2[3][2] * m1[2][j] + m2[3][3] * m1[3][j] ; } } static inline bool fgdPointInTriangle( sgdVec3 point, sgdVec3 tri[3] ) { sgdVec3 dif; // Some tolerance in meters we accept a point to be outside of the triangle // and still return that it is inside. SGDfloat eps = 1e-2; SGDfloat min, max; // punt if outside bouding cube SG_MIN_MAX3 ( min, max, tri[0][0], tri[1][0], tri[2][0] ); if( (point[0] < min - eps) || (point[0] > max + eps) ) return false; dif[0] = max - min; SG_MIN_MAX3 ( min, max, tri[0][1], tri[1][1], tri[2][1] ); if( (point[1] < min - eps) || (point[1] > max + eps) ) return false; dif[1] = max - min; SG_MIN_MAX3 ( min, max, tri[0][2], tri[1][2], tri[2][2] ); if( (point[2] < min - eps) || (point[2] > max + eps) ) return false; dif[2] = max - min; // drop the smallest dimension so we only have to work in 2d. SGDfloat min_dim = SG_MIN3 (dif[0], dif[1], dif[2]); SGDfloat x1, y1, x2, y2, x3, y3, rx, ry; if ( fabs(min_dim-dif[0]) <= DBL_EPSILON ) { // x is the smallest dimension x1 = point[1]; y1 = point[2]; x2 = tri[0][1]; y2 = tri[0][2]; x3 = tri[1][1]; y3 = tri[1][2]; rx = tri[2][1]; ry = tri[2][2]; } else if ( fabs(min_dim-dif[1]) <= DBL_EPSILON ) { // y is the smallest dimension x1 = point[0]; y1 = point[2]; x2 = tri[0][0]; y2 = tri[0][2]; x3 = tri[1][0]; y3 = tri[1][2]; rx = tri[2][0]; ry = tri[2][2]; } else if ( fabs(min_dim-dif[2]) <= DBL_EPSILON ) { // z is the smallest dimension x1 = point[0]; y1 = point[1]; x2 = tri[0][0]; y2 = tri[0][1]; x3 = tri[1][0]; y3 = tri[1][1]; rx = tri[2][0]; ry = tri[2][1]; } else { // all dimensions are really small so lets call it close // enough and return a successful match return true; } // check if intersection point is on the same side of p1 <-> p2 as p3 SGDfloat tmp = (y2 - y3); SGDfloat tmpn = (x2 - x3); int side1 = SG_SIGN (tmp * (rx - x3) + (y3 - ry) * tmpn); int side2 = SG_SIGN (tmp * (x1 - x3) + (y3 - y1) * tmpn + side1 * eps * fabs(tmpn)); if ( side1 != side2 ) { // printf("failed side 1 check\n"); return false; } // check if intersection point is on correct side of p2 <-> p3 as p1 tmp = (y3 - ry); tmpn = (x3 - rx); side1 = SG_SIGN (tmp * (x2 - rx) + (ry - y2) * tmpn); side2 = SG_SIGN (tmp * (x1 - rx) + (ry - y1) * tmpn + side1 * eps * fabs(tmpn)); if ( side1 != side2 ) { // printf("failed side 2 check\n"); return false; } // check if intersection point is on correct side of p1 <-> p3 as p2 tmp = (y2 - ry); tmpn = (x2 - rx); side1 = SG_SIGN (tmp * (x3 - rx) + (ry - y3) * tmpn); side2 = SG_SIGN (tmp * (x1 - rx) + (ry - y1) * tmpn + side1 * eps * fabs(tmpn)); if ( side1 != side2 ) { // printf("failed side 3 check\n"); return false; } return true; } // Test if the line given by the point on the line pt_on_line and the // line direction dir intersects the sphere sp. // Adapted from plib. static inline bool fgdIsectSphereInfLine(const sgdSphere& sp, const sgdVec3 pt_on_line, const sgdVec3 dir) { sgdVec3 r; sgdSubVec3( r, sp.getCenter(), pt_on_line ) ; SGDfloat projectedDistance = sgdScalarProductVec3(r, dir); SGDfloat dist = sgdScalarProductVec3 ( r, r ) - projectedDistance * projectedDistance; SGDfloat radius = sp.getRadius(); return dist < radius*radius; } FGGroundCache::FGGroundCache() { sgdSetVec3(cache_center, 0.0, 0.0, 0.0); ground_radius = 0.0; cache_ref_time = 0.0; wire_id = 0; sgdSetVec3(reference_wgs84_point, 0.0, 0.0, 0.0); reference_vehicle_radius = 0.0; found_ground = false; } FGGroundCache::~FGGroundCache() { } FGGroundCache::GroundProperty FGGroundCache::extractGroundProperty( ssgLeaf* l ) { // FIXME: Do more ... // Idea: have a get_globals() function which knows about that stuff. // Or most probably read that from a configuration file, // from property tree or whatever ... // Get ground dependent data. GroundProperty gp; gp.wire_id = -1; FGAICarrierHardware *ud = dynamic_cast(l->getUserData()); if (ud) { switch (ud->type) { case FGAICarrierHardware::Wire: gp.type = FGInterface::Wire; gp.wire_id = ud->id; break; case FGAICarrierHardware::Catapult: gp.type = FGInterface::Catapult; break; default: gp.type = FGInterface::Solid; break; } // Copy the velocity from the carrier class. ud->carrier->getVelocityWrtEarth( gp.vel, gp.rot, gp.pivot ); } else { // Initialize velocity field. sgdSetVec3( gp.vel, 0.0, 0.0, 0.0 ); sgdSetVec3( gp.rot, 0.0, 0.0, 0.0 ); sgdSetVec3( gp.pivot, 0.0, 0.0, 0.0 ); } // Get the texture name and decide what ground type we have. ssgState *st = l->getState(); if (st != NULL && st->isAKindOf(ssgTypeSimpleState())) { ssgSimpleState *ss = (ssgSimpleState*)st; SGPath fullPath( ss->getTextureFilename() ? ss->getTextureFilename(): "" ); string file = fullPath.file(); SGPath dirPath(fullPath.dir()); string category = dirPath.file(); if (category == "Runway") gp.type = FGInterface::Solid; else { if (file == "asphault.rgb" || file == "airport.rgb") gp.type = FGInterface::Solid; else if (file == "water.rgb" || file == "water-lake.rgb") gp.type = FGInterface::Water; else if (file == "forest.rgb" || file == "cropwood.rgb") gp.type = FGInterface::Forest; } } return gp; } void FGGroundCache::putLineLeafIntoCache(const sgdSphere *wsp, const sgdMat4 xform, ssgLeaf *l) { GroundProperty gp = extractGroundProperty(l); // Lines must have special meanings. // Wires and catapults are done with lines. int nl = l->getNumLines(); for (int i = 0; i < nl; ++i) { sgdSphere sphere; sphere.empty(); sgdVec3 ends[2]; short v[2]; l->getLine(i, v, v+1 ); for (int k=0; k<2; ++k) { sgdSetVec3(ends[k], l->getVertex(v[k])); sgdXformPnt3(ends[k], xform); sphere.extend(ends[k]); } if (wsp->intersects( &sphere )) { if (gp.type == FGInterface::Wire) { Wire wire; sgdCopyVec3(wire.ends[0], ends[0]); sgdCopyVec3(wire.ends[1], ends[1]); sgdCopyVec3(wire.velocity, gp.vel); sgdCopyVec3(wire.rotation, gp.rot); sgdSubVec3(wire.rotation_pivot, gp.pivot, cache_center); wire.wire_id = gp.wire_id; wires.push_back(wire); } if (gp.type == FGInterface::Catapult) { Catapult cat; sgdCopyVec3(cat.start, ends[0]); sgdCopyVec3(cat.end, ends[1]); sgdCopyVec3(cat.velocity, gp.vel); sgdCopyVec3(cat.rotation, gp.rot); sgdSubVec3(cat.rotation_pivot, gp.pivot, cache_center); catapults.push_back(cat); } } } } void FGGroundCache::putSurfaceLeafIntoCache(const sgdSphere *sp, const sgdMat4 xform, bool sphIsec, sgdVec3 down, ssgLeaf *l) { GroundProperty gp = extractGroundProperty(l); int nt = l->getNumTriangles(); for (int i = 0; i < nt; ++i) { Triangle t; t.sphere.empty(); short v[3]; l->getTriangle(i, &v[0], &v[1], &v[2]); for (int k = 0; k < 3; ++k) { sgdSetVec3(t.vertices[k], l->getVertex(v[k])); sgdXformPnt3(t.vertices[k], xform); t.sphere.extend(t.vertices[k]); } sgdMakePlane(t.plane, t.vertices[0], t.vertices[1], t.vertices[2]); SGDfloat dot = sgdScalarProductVec3(down, t.plane); if (dot > 0) { if (!l->getCullFace()) { // Surface points downwards, ignore for altitude computations. continue; } else sgdScaleVec4( t.plane, -1 ); } // Check if the sphere around the vehicle intersects the sphere // around that triangle. If so, put that triangle into the cache. if (sphIsec && sp->intersects(&t.sphere)) { sgdCopyVec3(t.velocity, gp.vel); sgdCopyVec3(t.rotation, gp.rot); sgdSubVec3(t.rotation_pivot, gp.pivot, cache_center); t.type = gp.type; triangles.push_back(t); } // In case the cache is empty, we still provide agl computations. // But then we use the old way of having a fixed elevation value for // the whole lifetime of this cache. if ( fgdIsectSphereInfLine(t.sphere, sp->getCenter(), down) ) { sgdVec3 tmp; sgdSetVec3(tmp, sp->center[0], sp->center[1], sp->center[2]); sgdVec3 isectpoint; if ( sgdIsectInfLinePlane( isectpoint, tmp, down, t.plane ) && fgdPointInTriangle( isectpoint, t.vertices ) ) { // Compute the offset to the ground cache midpoint sgdVec3 off; sgdSubVec3(off, isectpoint, tmp); // Only accept the altitude if the intersection point is below the // ground cache midpoint if (0 < sgdScalarProductVec3( off, down )) { found_ground = true; sgdAddVec3(isectpoint, cache_center); double this_radius = sgdLengthVec3(isectpoint); if (ground_radius < this_radius) ground_radius = this_radius; } } } } } inline void FGGroundCache::velocityTransformTriangle(double dt, FGGroundCache::Triangle& dst, const FGGroundCache::Triangle& src) { sgdCopyVec3(dst.vertices[0], src.vertices[0]); sgdCopyVec3(dst.vertices[1], src.vertices[1]); sgdCopyVec3(dst.vertices[2], src.vertices[2]); sgdCopyVec4(dst.plane, src.plane); sgdCopyVec3(dst.sphere.center, src.sphere.center); dst.sphere.radius = src.sphere.radius; sgdCopyVec3(dst.velocity, src.velocity); sgdCopyVec3(dst.rotation, src.rotation); sgdCopyVec3(dst.rotation_pivot, src.rotation_pivot); dst.type = src.type; if (dt*sgdLengthSquaredVec3(src.velocity) != 0) { sgdVec3 pivotoff, vel; for (int i = 0; i < 3; ++i) { sgdSubVec3(pivotoff, src.vertices[i], src.rotation_pivot); sgdVectorProductVec3(vel, src.rotation, pivotoff); sgdAddVec3(vel, src.velocity); sgdAddScaledVec3(dst.vertices[i], vel, dt); } // Transform the plane equation sgdSubVec3(pivotoff, dst.plane, src.rotation_pivot); sgdVectorProductVec3(vel, src.rotation, pivotoff); sgdAddVec3(vel, src.velocity); dst.plane[3] += dt*sgdScalarProductVec3(dst.plane, vel); sgdAddScaledVec3(dst.sphere.center, src.velocity, dt); } } void FGGroundCache::cache_fill(ssgBranch *branch, sgdMat4 xform, sgdSphere* sp, sgdVec3 down, sgdSphere* wsp) { // Travel through all kids. ssgEntity *e; for ( e = branch->getKid(0); e != NULL ; e = branch->getNextKid() ) { if ( !(e->getTraversalMask() & SSGTRAV_HOT) ) continue; if ( e->getBSphere()->isEmpty() ) continue; // We need to check further if either the sphere around the branch // intersects the sphere around the aircraft or the line downwards from // the aircraft intersects the branchs sphere. sgdSphere esphere; sgdSetVec3(esphere.center, e->getBSphere()->center); esphere.radius = e->getBSphere()->radius; esphere.orthoXform(xform); bool wspIsec = wsp->intersects(&esphere); bool downIsec = fgdIsectSphereInfLine(esphere, sp->getCenter(), down); if (!wspIsec && !downIsec) continue; // For branches collect up the transforms to reach that branch and // call cache_fill recursively. if ( e->isAKindOf( ssgTypeBranch() ) ) { ssgBranch *b = (ssgBranch *)e; if ( b->isAKindOf( ssgTypeTransform() ) ) { // Collect up the transforms required to reach that part of // the branch. sgMat4 xform2; sgMakeIdentMat4( xform2 ); ssgTransform *t = (ssgTransform*)b; t->getTransform( xform2 ); sgdMat4 xform3; fgMultMat4(xform3, xform, xform2); cache_fill( b, xform3, sp, down, wsp ); } else cache_fill( b, xform, sp, down, wsp ); } // For leafs, check each triangle for intersection. // This will minimize the number of vertices/triangles in the cache. else if (e->isAKindOf(ssgTypeLeaf())) { // Since we reach that leaf if we have an intersection with the // most probably bigger wire/catapult cache sphere, we need to check // that here, if the smaller cache for the surface has a chance for hits. // Also, if the spheres do not intersect compute a coarse agl value // by following the line downwards originating at the aircraft. bool spIsec = sp->intersects(&esphere); putSurfaceLeafIntoCache(sp, xform, spIsec, down, (ssgLeaf *)e); // If we are here, we need to put all special hardware here into // the cache. if (wspIsec) putLineLeafIntoCache(wsp, xform, (ssgLeaf *)e); } } } bool FGGroundCache::prepare_ground_cache(double ref_time, const double pt[3], double rad) { // Empty cache. ground_radius = 0.0; found_ground = false; triangles.resize(0); catapults.resize(0); wires.resize(0); // Store the parameters we used to build up that cache. sgdCopyVec3(reference_wgs84_point, pt); reference_vehicle_radius = rad; // Store the time reference used to compute movements of moving triangles. cache_ref_time = ref_time; // Decide where we put the scenery center. Point3D old_cntr = globals->get_scenery()->get_center(); Point3D cntr(pt[0], pt[1], pt[2]); // Only move the cache center if it is unacceptable far away. if (40*40 < old_cntr.distance3Dsquared(cntr)) globals->get_scenery()->set_center(cntr); else cntr = old_cntr; // The center of the cache. sgdSetVec3(cache_center, cntr[0], cntr[1], cntr[2]); sgdVec3 ptoff; sgdSubVec3(ptoff, pt, cache_center); // Prepare sphere around the aircraft. sgdSphere acSphere; acSphere.setRadius(rad); acSphere.setCenter(ptoff); // Prepare bigger sphere around the aircraft. // This one is required for reliably finding wires we have caught but // have already left the hopefully smaller sphere for the ground reactions. const double max_wire_dist = 300.0; sgdSphere wireSphere; wireSphere.setRadius(max_wire_dist < rad ? rad : max_wire_dist); wireSphere.setCenter(ptoff); // Down vector. Is used for croase agl computations when we are far enough // from ground that we have an empty cache. sgdVec3 down; sgdSetVec3(down, -pt[0], -pt[1], -pt[2]); sgdNormalizeVec3(down); // We collapse all transforms we need to reach a particular leaf. // The leafs itself will be then transformed later. // So our cache is just flat. // For leafs which are moving (carriers surface, etc ...) // we will later store a speed in the GroundType class. We can then apply // some translations to that nodes according to the time which has passed // compared to that snapshot. sgdMat4 xform; sgdMakeIdentMat4( xform ); // Walk the scene graph and extract solid ground triangles and carrier data. ssgBranch *terrain = globals->get_scenery()->get_scene_graph(); cache_fill(terrain, xform, &acSphere, down, &wireSphere); // some stats SG_LOG(SG_FLIGHT,SG_DEBUG, "prepare_ground_cache(): ac radius = " << rad << ", # triangles = " << triangles.size() << ", # wires = " << wires.size() << ", # catapults = " << catapults.size() << ", ground_radius = " << ground_radius ); // If the ground radius is still below 5e6 meters, then we do not yet have // any scenery. found_ground = found_ground && 5e6 < ground_radius; if (!found_ground) SG_LOG(SG_FLIGHT, SG_WARN, "prepare_ground_cache(): trying to build cache " "without any scenery below the aircraft" ); if (cntr != old_cntr) globals->get_scenery()->set_center(old_cntr); return found_ground; } bool FGGroundCache::is_valid(double *ref_time, double pt[3], double *rad) { sgdCopyVec3(pt, reference_wgs84_point); *rad = reference_vehicle_radius; *ref_time = cache_ref_time; return found_ground; } double FGGroundCache::get_cat(double t, const double dpt[3], double end[2][3], double vel[2][3]) { // start with a distance of 1e10 meters... double dist = 1e10; // Time difference to the reference time. t -= cache_ref_time; size_t sz = catapults.size(); for (size_t i = 0; i < sz; ++i) { sgdVec3 pivotoff, rvel[2]; sgdLineSegment3 ls; sgdCopyVec3(ls.a, catapults[i].start); sgdCopyVec3(ls.b, catapults[i].end); sgdSubVec3(pivotoff, ls.a, catapults[i].rotation_pivot); sgdVectorProductVec3(rvel[0], catapults[i].rotation, pivotoff); sgdAddVec3(rvel[0], catapults[i].velocity); sgdSubVec3(pivotoff, ls.b, catapults[i].rotation_pivot); sgdVectorProductVec3(rvel[1], catapults[i].rotation, pivotoff); sgdAddVec3(rvel[1], catapults[i].velocity); sgdAddVec3(ls.a, cache_center); sgdAddVec3(ls.b, cache_center); sgdAddScaledVec3(ls.a, rvel[0], t); sgdAddScaledVec3(ls.b, rvel[1], t); double this_dist = sgdDistSquaredToLineSegmentVec3( ls, dpt ); if (this_dist < dist) { SG_LOG(SG_FLIGHT,SG_INFO, "Found catapult " << this_dist << " meters away"); dist = this_dist; // The carrier code takes care of that ordering. sgdCopyVec3( end[0], ls.a ); sgdCopyVec3( end[1], ls.b ); sgdCopyVec3( vel[0], rvel[0] ); sgdCopyVec3( vel[1], rvel[1] ); } } // At the end take the root, we only computed squared distances ... return sqrt(dist); } bool FGGroundCache::get_agl(double t, const double dpt[3], double max_altoff, double contact[3], double normal[3], double vel[3], int *type, double *loadCapacity, double *frictionFactor, double *agl) { bool ret = false; *type = FGInterface::Unknown; // *agl = 0.0; *loadCapacity = DBL_MAX; *frictionFactor = 1.0; sgdSetVec3( vel, 0.0, 0.0, 0.0 ); sgdSetVec3( contact, 0.0, 0.0, 0.0 ); sgdSetVec3( normal, 0.0, 0.0, 0.0 ); // Time difference to th reference time. t -= cache_ref_time; // The double valued point we start to search for intersection. sgdVec3 pt; sgdSubVec3( pt, dpt, cache_center ); // The search direction sgdVec3 dir; sgdSetVec3( dir, -dpt[0], -dpt[1], -dpt[2] ); sgdNormaliseVec3( dir ); // Initialize to something sensible double current_radius = 0.0; size_t sz = triangles.size(); for (size_t i = 0; i < sz; ++i) { Triangle triangle; velocityTransformTriangle(t, triangle, triangles[i]); if (!fgdIsectSphereInfLine(triangle.sphere, pt, dir)) continue; // Check for intersection. sgdVec3 isecpoint; if ( sgdIsectInfLinePlane( isecpoint, pt, dir, triangle.plane ) && sgdPointInTriangle( isecpoint, triangle.vertices ) ) { // Compute the vector from pt to the intersection point ... sgdVec3 off; sgdSubVec3(off, isecpoint, pt); // ... and check if it is too high or not if (-max_altoff < sgdScalarProductVec3( off, dir )) { // Transform to the wgs system sgdAddVec3( isecpoint, cache_center ); // compute the radius, good enough approximation to take the geocentric radius SGDfloat radius = sgdLengthSquaredVec3(isecpoint); if (current_radius < radius) { current_radius = radius; ret = true; // Save the new potential intersection point. sgdCopyVec3( contact, isecpoint ); // The first three values in the vector are the plane normal. sgdCopyVec3( normal, triangle.plane ); // The velocity wrt earth. sgdVec3 pivotoff; sgdSubVec3(pivotoff, pt, triangle.rotation_pivot); sgdVectorProductVec3(vel, triangle.rotation, pivotoff); sgdAddVec3(vel, triangle.velocity); // Save the ground type. *type = triangle.type; // FIXME: figure out how to get that sign ... // *agl = sqrt(sqdist); *agl = sgdLengthVec3( dpt ) - sgdLengthVec3( contact ); // *loadCapacity = DBL_MAX; // *frictionFactor = 1.0; } } } } if (ret) return true; // Whenever we did not have a ground triangle for the requested point, // take the ground level we found during the current cache build. // This is as good as what we had before for agl. double r = sgdLengthVec3( dpt ); sgdCopyVec3( contact, dpt ); sgdScaleVec3( contact, ground_radius/r ); sgdCopyVec3( normal, dpt ); sgdNormaliseVec3( normal ); sgdSetVec3( vel, 0.0, 0.0, 0.0 ); // The altitude is the distance of the requested point from the // contact point. *agl = sgdLengthVec3( dpt ) - sgdLengthVec3( contact ); *type = FGInterface::Unknown; *loadCapacity = DBL_MAX; *frictionFactor = 1.0; return ret; } bool FGGroundCache::caught_wire(double t, const double pt[4][3]) { size_t sz = wires.size(); if (sz == 0) return false; // Time difference to the reference time. t -= cache_ref_time; // Build the two triangles spanning the area where the hook has moved // during the past step. sgdVec4 plane[2]; sgdVec3 tri[2][3]; sgdMakePlane( plane[0], pt[0], pt[1], pt[2] ); sgdCopyVec3( tri[0][0], pt[0] ); sgdCopyVec3( tri[0][1], pt[1] ); sgdCopyVec3( tri[0][2], pt[2] ); sgdMakePlane( plane[1], pt[0], pt[2], pt[3] ); sgdCopyVec3( tri[1][0], pt[0] ); sgdCopyVec3( tri[1][1], pt[2] ); sgdCopyVec3( tri[1][2], pt[3] ); // Intersect the wire lines with each of these triangles. // You have caught a wire if they intersect. for (size_t i = 0; i < sz; ++i) { sgdVec3 le[2]; for (int k = 0; k < 2; ++k) { sgdVec3 pivotoff, vel; sgdCopyVec3(le[k], wires[i].ends[k]); sgdSubVec3(pivotoff, le[k], wires[i].rotation_pivot); sgdVectorProductVec3(vel, wires[i].rotation, pivotoff); sgdAddVec3(vel, wires[i].velocity); sgdAddScaledVec3(le[k], vel, t); sgdAddVec3(le[k], cache_center); } for (int k=0; k<2; ++k) { sgdVec3 isecpoint; double isecval = sgdIsectLinesegPlane(isecpoint, le[0], le[1], plane[k]); if ( 0.0 <= isecval && isecval <= 1.0 && sgdPointInTriangle( isecpoint, tri[k] ) ) { SG_LOG(SG_FLIGHT,SG_INFO, "Caught wire"); // Store the wire id. wire_id = wires[i].wire_id; return true; } } } return false; } bool FGGroundCache::get_wire_ends(double t, double end[2][3], double vel[2][3]) { // Fast return if we do not have an active wire. if (wire_id < 0) return false; // Time difference to the reference time. t -= cache_ref_time; // Search for the wire with the matching wire id. size_t sz = wires.size(); for (size_t i = 0; i < sz; ++i) { if (wires[i].wire_id == wire_id) { for (size_t k = 0; k < 2; ++k) { sgdVec3 pivotoff; sgdCopyVec3(end[k], wires[i].ends[k]); sgdSubVec3(pivotoff, end[k], wires[i].rotation_pivot); sgdVectorProductVec3(vel[k], wires[i].rotation, pivotoff); sgdAddVec3(vel[k], wires[i].velocity); sgdAddScaledVec3(end[k], vel[k], t); sgdAddVec3(end[k], cache_center); } return true; } } return false; } void FGGroundCache::release_wire(void) { wire_id = -1; }