// FGAIBase - abstract base class for AI objects // Written by David Culp, started Nov 2003, based on // David Luff's FGAIEntity class. // - davidculp2@comcast.net // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. #ifdef HAVE_CONFIG_H # include #endif #include #include STL_STRING #include #include #include #include #include #include #include #include #include #include
#include #include "AIBase.hxx" #include "AIManager.hxx" const double FGAIBase::e = 2.71828183; const double FGAIBase::lbs_to_slugs = 0.031080950172; //conversion factor FGAIBase::FGAIBase(object_type ot) : fp( NULL ), props( NULL ), manager( NULL ), _refID( _newAIModelID() ), _otype(ot) { tgt_heading = hdg = tgt_altitude = tgt_speed = 0.0; tgt_roll = roll = tgt_pitch = tgt_yaw = tgt_vs = vs = pitch = 0.0; bearing = elevation = range = rdot = 0.0; x_shift = y_shift = rotation = 0.0; in_range = false; invisible = true; no_roll = true; life = 900; delete_me = false; } FGAIBase::~FGAIBase() { // Unregister that one at the scenery manager if (globals->get_scenery()) { globals->get_scenery()->unregister_placement_transform(aip.getTransform()); globals->get_scenery()->get_scene_graph()->removeKid(aip.getSceneGraph()); } if (props) { SGPropertyNode* parent = props->getParent(); if (parent) parent->removeChild(props->getName(), props->getIndex(), false); } delete fp; fp = 0; } void FGAIBase::readFromScenario(SGPropertyNode* scFileNode) { if (!scFileNode) return; setPath(scFileNode->getStringValue("model", "Models/Geometry/glider.ac")); setHeading(scFileNode->getDoubleValue("heading", 0.0)); setSpeed(scFileNode->getDoubleValue("speed", 0.0)); setAltitude(scFileNode->getDoubleValue("altitude", 0.0)); setLongitude(scFileNode->getDoubleValue("longitude", 0.0)); setLatitude(scFileNode->getDoubleValue("latitude", 0.0)); setBank(scFileNode->getDoubleValue("roll", 0.0)); } void FGAIBase::update(double dt) { if (_otype == otStatic) return; if (_otype == otBallistic) CalculateMach(); ft_per_deg_lat = 366468.96 - 3717.12 * cos(pos.lat()*SGD_DEGREES_TO_RADIANS); ft_per_deg_lon = 365228.16 * cos(pos.lat()*SGD_DEGREES_TO_RADIANS); } void FGAIBase::Transform() { if (!invisible) { aip.setPosition(pos.lon(), pos.lat(), pos.elev() * SG_METER_TO_FEET); if (no_roll) { aip.setOrientation(0.0, pitch, hdg); } else { aip.setOrientation(roll, pitch, hdg); } aip.update(); } } bool FGAIBase::init() { if (!model_path.empty()) { try { model = load3DModel( globals->get_fg_root(), model_path, props, globals->get_sim_time_sec() ); } catch (const sg_exception &e) { model = NULL; } } if (model) { aip.init( model ); aip.setVisible(true); invisible = false; globals->get_scenery()->get_scene_graph()->addKid(aip.getSceneGraph()); // Register that one at the scenery manager globals->get_scenery()->register_placement_transform(aip.getTransform()); } else { if (!model_path.empty()) { SG_LOG(SG_INPUT, SG_WARN, "AIBase: Could not load model " << model_path); } } setDie(false); return true; } ssgBranch * FGAIBase::load3DModel(const string& fg_root, const string &path, SGPropertyNode *prop_root, double sim_time_sec) { // some more code here to check whether a model with this name has already been loaded // if not load it, otherwise, get the memory pointer and do something like // SetModel as in ATC/AIEntity.cxx model = manager->getModel(path); if (!(model)) { model = sgLoad3DModel(fg_root, path, prop_root, sim_time_sec); manager->setModel(path, model); } return model; } bool FGAIBase::isa( object_type otype ) { if ( otype == _otype ) { return true; } else { return false; } } void FGAIBase::bind() { props->tie("id", SGRawValueMethods(*this, &FGAIBase::getID)); props->tie("velocities/true-airspeed-kt", SGRawValuePointer(&speed)); props->tie("velocities/vertical-speed-fps", SGRawValueMethods(*this, &FGAIBase::_getVS_fps, &FGAIBase::_setVS_fps)); props->tie("position/altitude-ft", SGRawValueMethods(*this, &FGAIBase::_getAltitude, &FGAIBase::_setAltitude)); props->tie("position/latitude-deg", SGRawValueMethods(*this, &FGAIBase::_getLatitude, &FGAIBase::_setLatitude)); props->tie("position/longitude-deg", SGRawValueMethods(*this, &FGAIBase::_getLongitude, &FGAIBase::_setLongitude)); props->tie("orientation/pitch-deg", SGRawValuePointer(&pitch)); props->tie("orientation/roll-deg", SGRawValuePointer(&roll)); props->tie("orientation/true-heading-deg", SGRawValuePointer(&hdg)); props->tie("radar/in-range", SGRawValuePointer(&in_range)); props->tie("radar/bearing-deg", SGRawValuePointer(&bearing)); props->tie("radar/elevation-deg", SGRawValuePointer(&elevation)); props->tie("radar/range-nm", SGRawValuePointer(&range)); props->tie("radar/h-offset", SGRawValuePointer(&horiz_offset)); props->tie("radar/v-offset", SGRawValuePointer(&vert_offset)); props->tie("radar/x-shift", SGRawValuePointer(&x_shift)); props->tie("radar/y-shift", SGRawValuePointer(&y_shift)); props->tie("radar/rotation", SGRawValuePointer(&rotation)); props->tie("controls/lighting/nav-lights", SGRawValueFunctions(_isNight)); props->setBoolValue("controls/lighting/beacon", true); props->setBoolValue("controls/lighting/strobe", true); props->setBoolValue("controls/glide-path", true); } void FGAIBase::unbind() { props->untie("id"); props->untie("velocities/true-airspeed-kt"); props->untie("velocities/vertical-speed-fps"); props->untie("position/altitude-ft"); props->untie("position/latitude-deg"); props->untie("position/longitude-deg"); props->untie("orientation/pitch-deg"); props->untie("orientation/roll-deg"); props->untie("orientation/true-heading-deg"); props->untie("radar/in-range"); props->untie("radar/bearing-deg"); props->untie("radar/elevation-deg"); props->untie("radar/range-nm"); props->untie("radar/h-offset"); props->untie("radar/v-offset"); props->untie("radar/x-shift"); props->untie("radar/y-shift"); props->untie("radar/rotation"); props->untie("controls/lighting/nav-lights"); } double FGAIBase::UpdateRadar(FGAIManager* manager) { double radar_range_ft2 = fgGetDouble("/instrumentation/radar/range"); radar_range_ft2 *= SG_NM_TO_METER * SG_METER_TO_FEET * 1.1; // + 10% radar_range_ft2 *= radar_range_ft2; double user_latitude = manager->get_user_latitude(); double user_longitude = manager->get_user_longitude(); double lat_range = fabs(pos.lat() - user_latitude) * ft_per_deg_lat; double lon_range = fabs(pos.lon() - user_longitude) * ft_per_deg_lon; double range_ft2 = lat_range*lat_range + lon_range*lon_range; // // Test whether the target is within radar range. // in_range = (range_ft2 && (range_ft2 <= radar_range_ft2)); if ( in_range ) { props->setBoolValue("radar/in-range", true); // copy values from the AIManager double user_altitude = manager->get_user_altitude(); double user_heading = manager->get_user_heading(); double user_pitch = manager->get_user_pitch(); double user_yaw = manager->get_user_yaw(); double user_speed = manager->get_user_speed(); // calculate range to target in feet and nautical miles double range_ft = sqrt( range_ft2 ); range = range_ft / 6076.11549; // calculate bearing to target if (pos.lat() >= user_latitude) { bearing = atan2(lat_range, lon_range) * SG_RADIANS_TO_DEGREES; if (pos.lon() >= user_longitude) { bearing = 90.0 - bearing; } else { bearing = 270.0 + bearing; } } else { bearing = atan2(lon_range, lat_range) * SG_RADIANS_TO_DEGREES; if (pos.lon() >= user_longitude) { bearing = 180.0 - bearing; } else { bearing = 180.0 + bearing; } } // calculate look left/right to target, without yaw correction horiz_offset = bearing - user_heading; if (horiz_offset > 180.0) horiz_offset -= 360.0; if (horiz_offset < -180.0) horiz_offset += 360.0; // calculate elevation to target elevation = atan2( altitude * SG_METER_TO_FEET - user_altitude, range_ft ) * SG_RADIANS_TO_DEGREES; // calculate look up/down to target vert_offset = elevation + user_pitch; /* this calculation needs to be fixed, but it isn't important anyway // calculate range rate double recip_bearing = bearing + 180.0; if (recip_bearing > 360.0) recip_bearing -= 360.0; double my_horiz_offset = recip_bearing - hdg; if (my_horiz_offset > 180.0) my_horiz_offset -= 360.0; if (my_horiz_offset < -180.0) my_horiz_offset += 360.0; rdot = (-user_speed * cos( horiz_offset * SG_DEGREES_TO_RADIANS )) +(-speed * 1.686 * cos( my_horiz_offset * SG_DEGREES_TO_RADIANS )); */ // now correct look left/right for yaw horiz_offset += user_yaw; // calculate values for radar display y_shift = range * cos( horiz_offset * SG_DEGREES_TO_RADIANS); x_shift = range * sin( horiz_offset * SG_DEGREES_TO_RADIANS); rotation = hdg - user_heading; if (rotation < 0.0) rotation += 360.0; } return range_ft2; } SGVec3d FGAIBase::getCartPosAt(const SGVec3d& _off) const { // Transform that one to the horizontal local coordinate system. SGQuatd hlTrans = SGQuatd::fromLonLatDeg(pos.lon(), pos.lat()); // and postrotate the orientation of the AIModel wrt the horizontal // local frame hlTrans *= SGQuatd::fromYawPitchRollDeg(hdg, pitch, roll); // The offset converted to the usual body fixed coordinate system // rotated to the earth fiexed coordinates axis SGVec3d off = hlTrans.backTransform(_off); // Add the position offset of the AIModel to gain the earth centered position SGVec3d cartPos = SGGeod::fromDegFt(pos.lon(), pos.lat(), pos.elev()); return cartPos + off; } /* * getters and Setters */ void FGAIBase::_setLongitude( double longitude ) { pos.setlon(longitude); } void FGAIBase::_setLatitude ( double latitude ) { pos.setlat(latitude); } double FGAIBase::_getLongitude() const { return pos.lon(); } double FGAIBase::_getLatitude () const { return pos.lat(); } double FGAIBase::_getRdot() const { return rdot; } double FGAIBase::_getVS_fps() const { return vs*60.0; } void FGAIBase::_setVS_fps( double _vs ) { vs = _vs/60.0; } double FGAIBase::_getAltitude() const { return altitude; } void FGAIBase::_setAltitude( double _alt ) { setAltitude( _alt ); } bool FGAIBase::_isNight() { return (fgGetFloat("/sim/time/sun-angle-rad") > 1.57); } int FGAIBase::getID() const { return _refID; } void FGAIBase::CalculateMach() { // Calculate rho at altitude, using standard atmosphere // For the temperature T and the pressure p, if (altitude < 36152) { // curve fits for the troposphere T = 59 - 0.00356 * altitude; p = 2116 * pow( ((T + 459.7) / 518.6) , 5.256); } else if ( 36152 < altitude && altitude < 82345 ) { // lower stratosphere T = -70; p = 473.1 * pow( e , 1.73 - (0.000048 * altitude) ); } else { // upper stratosphere T = -205.05 + (0.00164 * altitude); p = 51.97 * pow( ((T + 459.7) / 389.98) , -11.388); } rho = p / (1718 * (T + 459.7)); // calculate the speed of sound at altitude // a = sqrt ( g * R * (T + 459.7)) // where: // a = speed of sound [ft/s] // g = specific heat ratio, which is usually equal to 1.4 // R = specific gas constant, which equals 1716 ft-lb/slug/°R a = sqrt ( 1.4 * 1716 * (T + 459.7)); // calculate Mach number Mach = speed/a; // cout << "Speed(ft/s) "<< speed <<" Altitude(ft) "<< altitude << " Mach " << Mach; } int FGAIBase::_newAIModelID() { static int id = 0; if (!++id) id++; // id = 0 is not allowed. return id; }