/******************************************************************************* Header: FGInitialCondition.cpp Author: Tony Peden Date started: 7/1/99 ------------- Copyright (C) 1999 Anthony K. Peden (apeden@earthlink.net) ------------- This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. Further information about the GNU General Public License can also be found on the world wide web at http://www.gnu.org. HISTORY -------------------------------------------------------------------------------- 7/1/99 TP Created FUNCTIONAL DESCRIPTION -------------------------------------------------------------------------------- The purpose of this class is to take a set of initial conditions and provide a kinematically consistent set of body axis velocity components, euler angles, and altitude. This class does not attempt to trim the model i.e. the sim will most likely start in a very dynamic state (unless, of course, you have chosen your IC's wisely) even after setting it up with this class. ******************************************************************************** INCLUDES *******************************************************************************/ #include "FGInitialCondition.h" #include "FGFDMExec.h" #include "FGState.h" #include "FGAtmosphere.h" #include "FGFCS.h" #include "FGAircraft.h" #include "FGTranslation.h" #include "FGRotation.h" #include "FGPosition.h" #include "FGAuxiliary.h" #include "FGOutput.h" #include "FGDefs.h" static const char *IdSrc = "$Header$"; static const char *IdHdr = ID_INITIALCONDITION; FGInitialCondition::FGInitialCondition(FGFDMExec *FDMExec) { vt=vc=ve=0; mach=0; alpha=beta=gamma=0; theta=phi=psi=0; altitude=hdot=0; latitude=longitude=0; u=v=w=0; vnorth=veast=vdown=0; lastSpeedSet=setvt; sea_level_radius = EARTHRAD; radius_to_vehicle = EARTHRAD; terrain_altitude = 0; if(FDMExec != NULL ) { fdmex=FDMExec; fdmex->GetPosition()->Seth(altitude); fdmex->GetAtmosphere()->Run(); } else { cout << "FGInitialCondition: This class requires a pointer to a valid FGFDMExec object" << endl; } } FGInitialCondition::~FGInitialCondition(void) {} void FGInitialCondition::SetVcalibratedKtsIC(float tt) { if(getMachFromVcas(&mach,tt*jsbKTSTOFPS)) { //cout << "Mach: " << mach << endl; lastSpeedSet=setvc; vc=tt*jsbKTSTOFPS; vt=mach*fdmex->GetAtmosphere()->GetSoundSpeed(); ve=vt*sqrt(fdmex->GetAtmosphere()->GetDensityRatio()); //cout << "Vt: " << vt*jsbFPSTOKTS << " Vc: " << vc*jsbFPSTOKTS << endl; } else { cout << "Failed to get Mach number for given Vc and altitude, Vc unchanged." << endl; cout << "Please mail the set of initial conditions used to apeden@earthlink.net" << endl; } } void FGInitialCondition::SetVequivalentKtsIC(float tt) { ve=tt*jsbKTSTOFPS; lastSpeedSet=setve; vt=ve*1/sqrt(fdmex->GetAtmosphere()->GetDensityRatio()); mach=vt/fdmex->GetAtmosphere()->GetSoundSpeed(); vc=calcVcas(mach); } void FGInitialCondition::SetVtrueKtsIC(float tt) { vt=tt*jsbKTSTOFPS; lastSpeedSet=setvt; mach=vt/fdmex->GetAtmosphere()->GetSoundSpeed(); vc=calcVcas(mach); ve=vt*sqrt(fdmex->GetAtmosphere()->GetDensityRatio()); } void FGInitialCondition::SetMachIC(float tt) { mach=tt; lastSpeedSet=setmach; vt=mach*fdmex->GetAtmosphere()->GetSoundSpeed(); vc=calcVcas(mach); ve=vt*sqrt(fdmex->GetAtmosphere()->GetDensityRatio()); //cout << "Vt: " << vt*jsbFPSTOKTS << " Vc: " << vc*jsbFPSTOKTS << endl; } void FGInitialCondition::SetClimbRateFpmIC(float tt) { SetClimbRateFpsIC(tt/60.0); } void FGInitialCondition::SetClimbRateFpsIC(float tt) { if(vt > 0.1) { hdot=tt; gamma=asin(hdot/vt); } } void FGInitialCondition::SetFlightPathAngleRadIC(float tt) { gamma=tt; getTheta(); hdot=vt*sin(tt); } void FGInitialCondition::SetUBodyFpsIC(float tt) { u=tt; vt=sqrt(u*u+v*v+w*w); lastSpeedSet=setuvw; } void FGInitialCondition::SetVBodyFpsIC(float tt) { v=tt; vt=sqrt(u*u+v*v+w*w); lastSpeedSet=setuvw; } void FGInitialCondition::SetWBodyFpsIC(float tt) { w=tt; vt=sqrt(u*u+v*v+w*w); lastSpeedSet=setuvw; } void FGInitialCondition::SetAltitudeFtIC(float tt) { altitude=tt; fdmex->GetPosition()->Seth(altitude); fdmex->GetAtmosphere()->Run(); //lets try to make sure the user gets what they intended switch(lastSpeedSet) { case setned: case setuvw: case setvt: SetVtrueKtsIC(vt*jsbFPSTOKTS); break; case setvc: SetVcalibratedKtsIC(vc*jsbFPSTOKTS); break; case setve: SetVequivalentKtsIC(ve*jsbFPSTOKTS); break; case setmach: SetMachIC(mach); break; } } void FGInitialCondition::SetAltitudeAGLFtIC(float tt) { fdmex->GetPosition()->SetDistanceAGL(tt); altitude=fdmex->GetPosition()->Geth(); SetAltitudeFtIC(altitude); } void FGInitialCondition::SetSeaLevelRadiusFtIC(double tt) { sea_level_radius = tt; } void FGInitialCondition::SetTerrainAltitudeFtIC(double tt) { terrain_altitude=tt; fdmex->GetPosition()->SetDistanceAGL(altitude-terrain_altitude); fdmex->GetPosition()->SetRunwayRadius(sea_level_radius + terrain_altitude); } void FGInitialCondition::calcUVWfromNED(void) { u=vnorth*cos(theta)*cos(psi) + veast*cos(theta)*sin(psi) - vdown*sin(theta); v=vnorth*(sin(phi)*sin(theta)*cos(psi) - cos(phi)*sin(psi)) + veast*(sin(phi)*sin(theta)*sin(psi) + cos(phi)*cos(psi)) + vdown*sin(phi)*cos(theta); w=vnorth*(cos(phi)*sin(theta)*cos(psi) + sin(phi)*sin(psi)) + veast*(cos(phi)*sin(theta)*sin(psi) - sin(phi)*cos(psi)) + vdown*cos(phi)*cos(theta); } void FGInitialCondition::SetVnorthFpsIC(float tt) { vnorth=tt; calcUVWfromNED(); vt=sqrt(u*u + v*v + w*w); lastSpeedSet=setned; } void FGInitialCondition::SetVeastFpsIC(float tt) { veast=tt; calcUVWfromNED(); vt=sqrt(u*u + v*v + w*w); lastSpeedSet=setned; } void FGInitialCondition::SetVdownFpsIC(float tt) { vdown=tt; calcUVWfromNED(); vt=sqrt(u*u + v*v + w*w); SetClimbRateFpsIC(-1*vdown); lastSpeedSet=setned; } bool FGInitialCondition::getMachFromVcas(float *Mach,float vcas) { bool result=false; float guess=1.5; xlo=xhi=0; xmin=0;xmax=50; sfunc=&FGInitialCondition::calcVcas; if(findInterval(vcas,guess)) { if(solve(&mach,vcas)) result=true; } return result; } bool FGInitialCondition::getAlpha(void) { bool result=false; float guess=theta-gamma; xlo=xhi=0; xmin=fdmex->GetAircraft()->GetAlphaCLMin(); xmax=fdmex->GetAircraft()->GetAlphaCLMax(); sfunc=&FGInitialCondition::GammaEqOfAlpha; if(findInterval(0,guess)){ if(solve(&alpha,0)){ result=true; } } return result; } bool FGInitialCondition::getTheta(void) { bool result=false; float guess=alpha+gamma; xlo=xhi=0; xmin=-89;xmax=89; sfunc=&FGInitialCondition::GammaEqOfTheta; if(findInterval(0,guess)){ if(solve(&theta,0)){ result=true; } } return result; } float FGInitialCondition::GammaEqOfTheta(float Theta) { float a,b,c; a=cos(alpha)*cos(beta)*sin(Theta); b=sin(beta)*sin(phi); c=sin(alpha)*cos(beta)*cos(phi); return sin(gamma)-a+(b+c)*cos(Theta); } float FGInitialCondition::GammaEqOfAlpha(float Alpha) { float a,b,c; a=cos(Alpha)*cos(beta)*sin(theta); b=sin(beta)*sin(phi); c=sin(Alpha)*cos(beta)*cos(phi); return sin(gamma)-a+(b+c)*cos(theta); } float FGInitialCondition::calcVcas(float Mach) { float p=fdmex->GetAtmosphere()->GetPressure(); float psl=fdmex->GetAtmosphere()->GetPressureSL(); float rhosl=fdmex->GetAtmosphere()->GetDensitySL(); float pt,A,B,D,vcas; if(Mach < 0) Mach=0; if(Mach < 1) //calculate total pressure assuming isentropic flow pt=p*pow((1 + 0.2*Mach*Mach),3.5); else { // shock in front of pitot tube, we'll assume its normal and use // the Rayleigh Pitot Tube Formula, i.e. the ratio of total // pressure behind the shock to the static pressure in front //the normal shock assumption should not be a bad one -- most supersonic //aircraft place the pitot probe out front so that it is the forward //most point on the aircraft. The real shock would, of course, take //on something like the shape of a rounded-off cone but, here again, //the assumption should be good since the opening of the pitot probe //is very small and, therefore, the effects of the shock curvature //should be small as well. AFAIK, this approach is fairly well accepted //within the aerospace community B = 5.76*Mach*Mach/(5.6*Mach*Mach - 0.8); // The denominator above is zero for Mach ~ 0.38, for which // we'll never be here, so we're safe D = (2.8*Mach*Mach-0.4)*0.4167; pt = p*pow(B,3.5)*D; } A = pow(((pt-p)/psl+1),0.28571); vcas = sqrt(7*psl/rhosl*(A-1)); //cout << "calcVcas: vcas= " << vcas*jsbFPSTOKTS << " mach= " << Mach << " pressure: " << pt << endl; return vcas; } bool FGInitialCondition::findInterval(float x,float guess) { //void find_interval(inter_params &ip,eqfunc f,float y,float constant, int &flag){ int i=0; bool found=false; float flo,fhi,fguess; float lo,hi,step; step=0.1; fguess=(this->*sfunc)(guess)-x; lo=hi=guess; do { step=2*step; lo-=step; hi+=step; if(lo < xmin) lo=xmin; if(hi > xmax) hi=xmax; i++; flo=(this->*sfunc)(lo)-x; fhi=(this->*sfunc)(hi)-x; if(flo*fhi <=0) { //found interval with root found=true; if(flo*fguess <= 0) { //narrow interval down a bit hi=lo+step; //to pass solver interval that is as //small as possible } else if(fhi*fguess <= 0) { lo=hi-step; } } //cout << "findInterval: i=" << i << " Lo= " << lo << " Hi= " << hi << endl; } while((found == 0) && (i <= 100)); xlo=lo; xhi=hi; return found; } bool FGInitialCondition::solve(float *y,float x) { float x1,x2,x3,f1,f2,f3,d,d0; float eps=1E-5; float const relax =0.9; int i; bool success=false; //initializations d=1; x1=xlo;x3=xhi; f1=(this->*sfunc)(x1)-x; f3=(this->*sfunc)(x3)-x; d0=fabs(x3-x1); //iterations i=0; while ((fabs(d) > eps) && (i < 100)) { d=(x3-x1)/d0; x2=x1-d*d0*f1/(f3-f1); f2=(this->*sfunc)(x2)-x; //cout << "solve x1,x2,x3: " << x1 << "," << x2 << "," << x3 << endl; //cout << " " << f1 << "," << f2 << "," << f3 << endl; if(fabs(f2) <= 0.001) { x1=x3=x2; } else if(f1*f2 <= 0.0) { x3=x2; f3=f2; f1=relax*f1; } else if(f2*f3 <= 0) { x1=x2; f1=f2; f3=relax*f3; } //cout << i << endl; i++; }//end while if(i < 100) { success=true; *y=x2; } //cout << "Success= " << success << " Vcas: " << vcas*jsbFPSTOKTS << " Mach: " << x2 << endl; return success; }