// vector.cxx -- additional vector routines // // Written by Curtis Olson, started December 1997. // // Copyright (C) 1997 Curtis L. Olson - curt@infoplane.com // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. // // $Id$ #include #include // #include #include "vector.hxx" #include "mat3.h" #if !defined( USE_XTRA_MAT3_INLINES ) // Map a vector onto the plane specified by normal void map_vec_onto_cur_surface_plane(MAT3vec normal, MAT3vec v0, MAT3vec vec, MAT3vec result) { MAT3vec u1, v, tmp; // calculate a vector "u1" representing the shortest distance from // the plane specified by normal and v0 to a point specified by // "vec". "u1" represents both the direction and magnitude of // this desired distance. // u1 = ( (normal vec) / (normal normal) ) * normal MAT3_SCALE_VEC( u1, normal, ( MAT3_DOT_PRODUCT(normal, vec) / MAT3_DOT_PRODUCT(normal, normal) ) ); // printf(" vec = %.2f, %.2f, %.2f\n", vec[0], vec[1], vec[2]); // printf(" v0 = %.2f, %.2f, %.2f\n", v0[0], v0[1], v0[2]); // printf(" u1 = %.2f, %.2f, %.2f\n", u1[0], u1[1], u1[2]); // calculate the vector "v" which is the vector "vec" mapped onto // the plane specified by "normal" and "v0". // v = v0 + vec - u1 MAT3_ADD_VEC(tmp, v0, vec); MAT3_SUB_VEC(v, tmp, u1); // printf(" v = %.2f, %.2f, %.2f\n", v[0], v[1], v[2]); // Calculate the vector "result" which is "v" - "v0" which is a // directional vector pointing from v0 towards v // result = v - v0 MAT3_SUB_VEC(result, v, v0); // printf(" result = %.2f, %.2f, %.2f\n", // result[0], result[1], result[2]); } #endif // !defined( USE_XTRA_MAT3_INLINES ) // Given a point p, and a line through p0 with direction vector d, // find the shortest distance from the point to the line double fgPointLine(MAT3vec p, MAT3vec p0, MAT3vec d) { MAT3vec u, u1, v; double ud, dd, tmp; // u = p - p0 MAT3_SUB_VEC(u, p, p0); // calculate the projection, u1, of u along d. // u1 = ( dot_prod(u, d) / dot_prod(d, d) ) * d; ud = MAT3_DOT_PRODUCT(u, d); dd = MAT3_DOT_PRODUCT(d, d); tmp = ud / dd; MAT3_SCALE_VEC(u1, d, tmp);; // v = u - u1 = vector from closest point on line, p1, to the // original point, p. MAT3_SUB_VEC(v, u, u1); return sqrt(MAT3_DOT_PRODUCT(v, v)); } // Given a point p, and a line through p0 with direction vector d, // find the shortest distance (squared) from the point to the line double fgPointLineSquared(MAT3vec p, MAT3vec p0, MAT3vec d) { MAT3vec u, u1, v; double ud, dd, tmp; // u = p - p0 MAT3_SUB_VEC(u, p, p0); // calculate the projection, u1, of u along d. // u1 = ( dot_prod(u, d) / dot_prod(d, d) ) * d; ud = MAT3_DOT_PRODUCT(u, d); dd = MAT3_DOT_PRODUCT(d, d); tmp = ud / dd; MAT3_SCALE_VEC(u1, d, tmp);; // v = u - u1 = vector from closest point on line, p1, to the // original point, p. MAT3_SUB_VEC(v, u, u1); return ( MAT3_DOT_PRODUCT(v, v) ); }