// triangle.cxx -- "Triangle" interface class // // Written by Curtis Olson, started March 1999. // // Copyright (C) 1999 Curtis L. Olson - curt@flightgear.org // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. // // $Id$ // (Log is kept at end of this file) #include "triangle.hxx" #include "tripoly.hxx" // Constructor FGTriangle::FGTriangle( void ) { } // Destructor FGTriangle::~FGTriangle( void ) { } // populate this class based on the specified gpc_polys list int FGTriangle::build( const point_list& corner_list, const point_list& fit_list, const FGgpcPolyList& gpc_polys ) { FGTriPoly poly; int index; // Point3D junkp; // int junkc = 0; // char junkn[256]; // FILE *junkfp; // traverse the dem corner and fit lists and gpc_polys building a // unified node list and converting the polygons so that they // reference the node list by index (starting at zero) rather than // listing the points explicitely // first the corners since these are important const_point_list_iterator f_current, f_last; f_current = corner_list.begin(); f_last = corner_list.end(); for ( ; f_current != f_last; ++f_current ) { index = in_nodes.unique_add( *f_current ); } // next process the polygons gpc_polygon *gpc_poly; const_gpcpoly_iterator current, last; // process polygons in priority order cout << "prepairing node list and polygons" << endl; for ( int i = 0; i < FG_MAX_AREA_TYPES; ++i ) { // cout << "area type = " << i << endl; current = gpc_polys.polys[i].begin(); last = gpc_polys.polys[i].end(); for ( ; current != last; ++current ) { gpc_poly = *current; cout << "processing a polygon, contours = " << gpc_poly->num_contours << endl; if (gpc_poly->num_contours <= 0 ) { cout << "FATAL ERROR! no contours in this polygon" << endl; exit(-1); } if (gpc_poly->num_contours > 1 ) { cout << "FATAL ERROR! no multi-contour support" << endl; sleep(2); // exit(-1); } for ( int j = 0; j < gpc_poly->num_contours; j++ ) { cout << " processing contour, nodes = " << gpc_poly->contour[j].num_vertices << endl; poly.erase(); // sprintf(junkn, "g.%d", junkc++); // junkfp = fopen(junkn, "w"); for ( int k = 0; k < gpc_poly->contour[j].num_vertices; k++ ) { Point3D p( gpc_poly->contour[j].vertex[k].x, gpc_poly->contour[j].vertex[k].y, 0 ); index = in_nodes.unique_add( p ); // junkp = in_nodes.get_node( index ); // fprintf(junkfp, "%.4f %.4f\n", junkp.x(), junkp.y()); poly.add_node(index); // cout << index << endl; } // fprintf(junkfp, "%.4f %.4f\n", // gpc_poly->contour[j].vertex[0].x, // gpc_poly->contour[j].vertex[0].y); // fclose(junkfp); poly.calc_point_inside( in_nodes ); polylist[i].push_back(poly); } } } // last, do the rest of the height nodes f_current = fit_list.begin(); f_last = fit_list.end(); for ( ; f_current != f_last; ++f_current ) { index = in_nodes.course_add( *f_current ); } for ( int i = 0; i < FG_MAX_AREA_TYPES; ++i ) { if ( polylist[i].size() ) { cout << get_area_name((AreaType)i) << " = " << polylist[i].size() << endl; } } // traverse the polygon lists and build the segment (edge) list // that is used by the "Triangle" lib. int i1, i2; point_list node_list = in_nodes.get_node_list(); for ( int i = 0; i < FG_MAX_AREA_TYPES; ++i ) { // cout << "area type = " << i << endl; tripoly_list_iterator tp_current, tp_last; tp_current = polylist[i].begin(); tp_last = polylist[i].end(); // process each polygon in list for ( ; tp_current != tp_last; ++tp_current ) { poly = *tp_current; for ( int j = 0; j < (int)(poly.size()) - 1; ++j ) { i1 = poly.get_pt_index( j ); i2 = poly.get_pt_index( j + 1 ); // calc_line_params(i1, i2, &m, &b); trisegs.unique_divide_and_add( node_list, FGTriSeg(i1, i2) ); } i1 = poly.get_pt_index( 0 ); i2 = poly.get_pt_index( poly.size() - 1 ); // calc_line_params(i1, i2, &m, &b); trisegs.unique_divide_and_add( node_list, FGTriSeg(i1, i2) ); } } return 0; } static void write_out_data(struct triangulateio *out) { FILE *node = fopen("tile.node", "w"); fprintf(node, "%d 2 %d 0\n", out->numberofpoints, out->numberofpointattributes); for (int i = 0; i < out->numberofpoints; i++) { fprintf(node, "%d %.6f %.6f %.2f\n", i, out->pointlist[2*i], out->pointlist[2*i + 1], 0.0); } fclose(node); FILE *ele = fopen("tile.ele", "w"); fprintf(ele, "%d 3 0\n", out->numberoftriangles); for (int i = 0; i < out->numberoftriangles; i++) { fprintf(ele, "%d ", i); for (int j = 0; j < out->numberofcorners; j++) { fprintf(ele, "%d ", out->trianglelist[i * out->numberofcorners + j]); } for (int j = 0; j < out->numberoftriangleattributes; j++) { fprintf(ele, "%.6f ", out->triangleattributelist[i * out->numberoftriangleattributes + j] ); } fprintf(ele, "\n"); } fclose(ele); FILE *fp = fopen("tile.poly", "w"); fprintf(fp, "0 2 1 0\n"); fprintf(fp, "%d 0\n", out->numberofsegments); for (int i = 0; i < out->numberofsegments; ++i) { fprintf(fp, "%d %d %d\n", i, out->segmentlist[2*i], out->segmentlist[2*i + 1]); } fprintf(fp, "%d\n", out->numberofholes); for (int i = 0; i < out->numberofholes; i++) { fprintf(fp, "%d %.6f %.6f\n", i, out->holelist[2*i], out->holelist[2*i + 1]); } fprintf(fp, "%d\n", out->numberofregions); for (int i = 0; i < out->numberofregions; i++) { fprintf(fp, "%d %.6f %.6f %.6f\n", i, out->regionlist[4*i], out->regionlist[4*i + 1], out->regionlist[4*i + 2]); } fclose(fp); } // triangulate each of the polygon areas int FGTriangle::run_triangulate() { FGTriPoly poly; Point3D p; struct triangulateio in, out, vorout; int counter; // point list point_list node_list = in_nodes.get_node_list(); in.numberofpoints = node_list.size(); in.pointlist = (REAL *) malloc(in.numberofpoints * 2 * sizeof(REAL)); point_list_iterator tn_current, tn_last; tn_current = node_list.begin(); tn_last = node_list.end(); counter = 0; for ( ; tn_current != tn_last; ++tn_current ) { in.pointlist[counter++] = tn_current->x(); in.pointlist[counter++] = tn_current->y(); } in.numberofpointattributes = 1; in.pointattributelist = (REAL *) malloc(in.numberofpoints * in.numberofpointattributes * sizeof(REAL)); for ( int i = 0; i < in.numberofpoints * in.numberofpointattributes; i++) { in.pointattributelist[i] = 0.0; } in.pointmarkerlist = (int *) malloc(in.numberofpoints * sizeof(int)); for ( int i = 0; i < in.numberofpoints; i++) { in.pointmarkerlist[i] = 0; } // triangle list in.numberoftriangles = 0; // segment list triseg_list seg_list = trisegs.get_seg_list(); in.numberofsegments = seg_list.size(); in.segmentlist = (int *) malloc(in.numberofsegments * 2 * sizeof(int)); in.segmentmarkerlist = (int *) NULL; triseg_list_iterator s_current, s_last; s_current = seg_list.begin(); s_last = seg_list.end(); counter = 0; for ( ; s_current != s_last; ++s_current ) { in.segmentlist[counter++] = s_current->get_n1(); in.segmentlist[counter++] = s_current->get_n2(); } // hole list (make holes for airport ignore areas) in.numberofholes = polylist[(int)AirportIgnoreArea].size(); in.holelist = (REAL *) malloc(in.numberofholes * 2 * sizeof(REAL)); tripoly_list_iterator h_current, h_last; h_current = polylist[(int)AirportIgnoreArea].begin(); h_last = polylist[(int)AirportIgnoreArea].end(); counter = 0; for ( ; h_current != h_last; ++h_current ) { poly = *h_current; p = poly.get_point_inside(); in.holelist[counter++] = p.x(); in.holelist[counter++] = p.y(); } // region list in.numberofregions = 0; for ( int i = 0; i < FG_MAX_AREA_TYPES; ++i ) { in.numberofregions += polylist[i].size(); } in.regionlist = (REAL *) malloc(in.numberofregions * 4 * sizeof(REAL)); counter = 0; for ( int i = 0; i < FG_MAX_AREA_TYPES; ++i ) { tripoly_list_iterator h_current, h_last; h_current = polylist[(int)i].begin(); h_last = polylist[(int)i].end(); for ( ; h_current != h_last; ++h_current ) { poly = *h_current; p = poly.get_point_inside(); in.regionlist[counter++] = p.x(); // x coord in.regionlist[counter++] = p.y(); // y coord in.regionlist[counter++] = i; // region attribute in.regionlist[counter++] = -1.0; // area constraint (unused) } } // prep the output structures out.pointlist = (REAL *) NULL; // Not needed if -N switch used. // Not needed if -N switch used or number of point attributes is zero: out.pointattributelist = (REAL *) NULL; out.pointmarkerlist = (int *) NULL; // Not needed if -N or -B switch used. out.trianglelist = (int *) NULL; // Not needed if -E switch used. // Not needed if -E switch used or number of triangle attributes is zero: out.triangleattributelist = (REAL *) NULL; out.neighborlist = (int *) NULL; // Needed only if -n switch used. // Needed only if segments are output (-p or -c) and -P not used: out.segmentlist = (int *) NULL; // Needed only if segments are output (-p or -c) and -P and -B not used: out.segmentmarkerlist = (int *) NULL; out.edgelist = (int *) NULL; // Needed only if -e switch used. out.edgemarkerlist = (int *) NULL; // Needed if -e used and -B not used. vorout.pointlist = (REAL *) NULL; // Needed only if -v switch used. // Needed only if -v switch used and number of attributes is not zero: vorout.pointattributelist = (REAL *) NULL; vorout.edgelist = (int *) NULL; // Needed only if -v switch used. vorout.normlist = (REAL *) NULL; // Needed only if -v switch used. // TEMPORARY write_out_data(&in); // Triangulate the points. Switches are chosen to read and write // a PSLG (p), preserve the convex hull (c), number everything // from zero (z), assign a regional attribute to each element (A), // and produce an edge list (e), and a triangle neighbor list (n). string tri_options = "pczq10Aen"; // string tri_options = "pzAen"; // string tri_options = "pczq15S400Aen"; cout << "Triangulation with options = " << tri_options << endl; triangulate(tri_options.c_str(), &in, &out, &vorout); // TEMPORARY // write_out_data(&out); // now copy the results back into the corresponding FGTriangle // structures // nodes for ( int i = 0; i < out.numberofpoints; i++ ) { Point3D p( out.pointlist[2*i], out.pointlist[2*i + 1], 0.0 ); // cout << "point = " << p << endl; out_nodes.simple_add( p ); } // triangles int n1, n2, n3; double attribute; for ( int i = 0; i < out.numberoftriangles; i++ ) { n1 = out.trianglelist[i * 3]; n2 = out.trianglelist[i * 3 + 1]; n3 = out.trianglelist[i * 3 + 2]; if ( out.numberoftriangleattributes > 0 ) { attribute = out.triangleattributelist[i]; } else { attribute = 0.0; } // cout << "triangle = " << n1 << " " << n2 << " " << n3 << endl; elelist.push_back( FGTriEle( n1, n2, n3, attribute ) ); } // free mem allocated to the "Triangle" structures free(in.pointlist); free(in.pointattributelist); free(in.pointmarkerlist); free(in.regionlist); free(out.pointlist); free(out.pointattributelist); free(out.pointmarkerlist); free(out.trianglelist); free(out.triangleattributelist); // free(out.trianglearealist); free(out.neighborlist); free(out.segmentlist); free(out.segmentmarkerlist); free(out.edgelist); free(out.edgemarkerlist); free(vorout.pointlist); free(vorout.pointattributelist); free(vorout.edgelist); free(vorout.normlist); return 0; } // $Log$ // Revision 1.15 1999/04/03 05:22:58 curt // Found a bug in dividing and adding unique verticle segments which could // cause the triangulator to end up in an infinite loop. Basically the code // was correct, but the verticle line test was a bit to selective. // // Revision 1.14 1999/03/31 23:47:09 curt // Debugging output tweaks. // // Revision 1.13 1999/03/29 13:11:07 curt // Shuffled stl type names a bit. // Began adding support for tri-fanning (or maybe other arrangments too.) // // Revision 1.12 1999/03/27 05:30:12 curt // Handle corner nodes separately from the rest of the fitted nodes. // Add fitted nodes in after corners and polygon nodes since the fitted nodes // are less important. Subsequent nodes will "snap" to previous nodes if // they are "close enough." // Need to manually divide segments to prevent "T" intersetions which can // confound the triangulator. Hey, I got to use a recursive method! // Pass along correct triangle attributes to output file generator. // Do fine grained node snapping for corners and polygons, but course grain // node snapping for fitted terrain nodes. // // Revision 1.11 1999/03/23 22:02:51 curt // Refinements in naming and organization. // // Revision 1.10 1999/03/22 23:49:02 curt // Modifications to facilitate conversion to output format. // // Revision 1.9 1999/03/21 15:48:02 curt // Removed Dem2node from the Tools fold. // Tweaked the triangulator options to add quality mesh refinement. // // Revision 1.8 1999/03/21 14:02:06 curt // Added a mechanism to dump out the triangle structures for viewing. // Fixed a couple bugs in first pass at triangulation. // - needed to explicitely initialize the polygon accumulator in triangle.cxx // before each polygon rather than depending on the default behavior. // - Fixed a problem with region attribute propagation where I wasn't generating // the hole points correctly. // // Revision 1.7 1999/03/20 20:32:55 curt // First mostly successful tile triangulation works. There's plenty of tweaking // to do, but we are marching in the right direction. // // Revision 1.6 1999/03/20 13:22:11 curt // Added trisegs.[ch]xx tripoly.[ch]xx. // // Revision 1.5 1999/03/20 02:21:52 curt // Continue shaping the code towards triangulation bliss. Added code to // calculate some point guaranteed to be inside a polygon. // // Revision 1.4 1999/03/19 22:29:04 curt // Working on preparationsn for triangulation. // // Revision 1.3 1999/03/19 00:27:10 curt // Continued work on triangulation preparation. // // Revision 1.2 1999/03/18 04:31:11 curt // Let's not pass copies of huge structures on the stack ... ye might see a // segfault ... :-) // // Revision 1.1 1999/03/17 23:51:59 curt // Initial revision. //