#ifdef HAVE_CONFIG_H # include #endif #include #include #include #include #include #include "panelnode.hxx" SG_USING_STD(vector); // Static (!) handling for all 3D panels in the program. Very // clumsy. Replace with per-aircraft handling. vector all_3d_panels; bool fgHandle3DPanelMouseEvent( int button, int updown, int x, int y ) { for ( unsigned int i = 0; i < all_3d_panels.size(); i++ ) { if ( all_3d_panels[i]->doMouseAction(button, updown, x, y) ) { return true; } } return false; } void fgUpdate3DPanels() { for ( unsigned int i = 0; i < all_3d_panels.size(); i++ ) { all_3d_panels[i]->getPanel()->updateMouseDelay(); } } FGPanelNode::FGPanelNode(SGPropertyNode* props) { int i; // Make an FGPanel object. But *don't* call init() or bind() on // it -- those methods touch static state. _panel = fgReadPanel(props->getStringValue("path")); // Never mind. We *have* to call init to make sure the static // state is initialized (it's not, if there aren't any 2D // panels). This is a memory leak and should be fixed!` _panel->init(); _panel->setDepthTest( props->getBoolValue("depth-test") ); // Initialize the matrices to the identity. PLib prints warnings // when trying to invert singular matrices (e.g. when not using a // 3D panel). for(i=0; i<4; i++) for(int j=0; j<4; j++) _lastModelview[4*i+j] = _lastProjection[4*i+j] = i==j ? 1 : 0; // Read out the pixel-space info _xmax = _panel->getWidth(); _ymax = _panel->getHeight(); // And the corner points SGPropertyNode* pt = props->getChild("bottom-left"); _bottomLeft[0] = pt->getFloatValue("x-m"); _bottomLeft[1] = pt->getFloatValue("y-m"); _bottomLeft[2] = pt->getFloatValue("z-m"); pt = props->getChild("top-left"); _topLeft[0] = pt->getFloatValue("x-m"); _topLeft[1] = pt->getFloatValue("y-m"); _topLeft[2] = pt->getFloatValue("z-m"); pt = props->getChild("bottom-right"); _bottomRight[0] = pt->getFloatValue("x-m"); _bottomRight[1] = pt->getFloatValue("y-m"); _bottomRight[2] = pt->getFloatValue("z-m"); // Now generate our transformation matrix. For shorthand, use // "a", "b", and "c" as our corners and "m" as the matrix. The // vector u goes from a to b, v from a to c, and w is a // perpendicular cross product. float *a = _bottomLeft, *b = _bottomRight, *c = _topLeft, *m = _xform; float u[3], v[3], w[3]; for(i=0; i<3; i++) u[i] = b[i] - a[i]; // U = B - A for(i=0; i<3; i++) v[i] = c[i] - a[i]; // V = C - A w[0] = u[1]*v[2] - v[1]*u[2]; // W = U x V w[1] = u[2]*v[0] - v[2]*u[0]; w[2] = u[0]*v[1] - v[0]*u[1]; // Now generate a trivial basis transformation matrix. If we want // to map the three unit vectors to three arbitrary vectors U, V, // and W, then those just become the columns of the 3x3 matrix. m[0] = u[0]; m[4] = v[0]; m[8] = w[0]; m[12] = a[0]; // |Ux Vx Wx| m[1] = u[1]; m[5] = v[1]; m[9] = w[1]; m[13] = a[1]; // m = |Uy Vy Wy| m[2] = u[2]; m[6] = v[2]; m[10] = w[2]; m[14] = a[2]; // |Uz Vz Wz| m[3] = 0; m[7] = 0; m[11] = 0; m[15] = 1; // The above matrix maps the unit (!) square to the panel // rectangle. Postmultiply scaling factors that match the // pixel-space size of the panel. for(i=0; i<4; i++) { m[0+i] *= 1.0/_xmax; m[4+i] *= 1.0/_ymax; } // Now plib initialization. The bounding sphere is defined nicely // by our corner points: float cx = (b[0]+c[0])/2; float cy = (b[1]+c[1])/2; float cz = (b[2]+c[2])/2; float r = sqrt((cx-a[0])*(cx-a[0]) + (cy-a[1])*(cy-a[1]) + (cz-a[2])*(cz-a[2])); bsphere.setCenter(cx, cy, cz); bsphere.setRadius(r); // All done. Add us to the list all_3d_panels.push_back(this); } FGPanelNode::~FGPanelNode() { delete _panel; } void FGPanelNode::draw() { // What's the difference? draw_geometry(); } void FGPanelNode::draw_geometry() { glMatrixMode(GL_MODELVIEW); glPushMatrix(); glMultMatrixf(_xform); // Grab the matrix state, so that we can get back from screen // coordinates to panel coordinates when the user clicks the // mouse. glGetFloatv(GL_MODELVIEW_MATRIX, _lastModelview); glGetFloatv(GL_PROJECTION_MATRIX, _lastProjection); glGetIntegerv(GL_VIEWPORT, _lastViewport); _panel->draw(); glPopMatrix(); } bool FGPanelNode::doMouseAction(int button, int updown, int x, int y) { // Covert the screen coordinates to viewport coordinates in the // range [0:1], then transform to OpenGL "post projection" coords // in [-1:1]. Remember the difference in Y direction! float vx = (x + 0.5 - _lastViewport[0]) / _lastViewport[2]; float vy = (y + 0.5 - _lastViewport[1]) / _lastViewport[3]; vx = 2*vx - 1; vy = 1 - 2*vy; // Make two vectors in post-projection coordinates at the given // screen, one in the near field and one in the far field. sgVec3 a, b; a[0] = b[0] = vx; a[1] = b[1] = vy; a[2] = 0.75; // "Near" Z value b[2] = -0.75; // "Far" Z value // Run both vectors "backwards" through the OpenGL matrix // transformation. Remember to w-normalize the vectors! sgMat4 m; sgMultMat4(m, *(sgMat4*)_lastProjection, *(sgMat4*)_lastModelview); sgInvertMat4(m); sgFullXformPnt3(a, m); sgFullXformPnt3(b, m); // And find their intersection on the z=0 plane. The resulting X // and Y coordinates are the hit location in panel coordinates. float dxdz = (b[0] - a[0]) / (b[2] - a[2]); float dydz = (b[1] - a[1]) / (b[2] - a[2]); int panelX = (int)(a[0] - a[2]*dxdz + 0.5); int panelY = (int)(a[1] - a[2]*dydz + 0.5); return _panel->doLocalMouseAction(button, updown, panelX, panelY); } void FGPanelNode::die() { SG_LOG(SG_ALL,SG_ALERT,"Unimplemented function called on FGPanelNode"); exit(1); }