// polygon.cxx -- polygon (with holes) management class // // Written by Curtis Olson, started March 1999. // // Copyright (C) 1999 Curtis L. Olson - curt@flightgear.org // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. // // $Id$ #include #include #include "trisegs.hxx" #include "polygon.hxx" // Constructor FGPolygon::FGPolygon( void ) { } // Destructor FGPolygon::~FGPolygon( void ) { } // Given a line segment specified by two endpoints p1 and p2, return // the slope of the line. static double slope( const Point3D& p0, const Point3D& p1 ) { if ( fabs(p0.x() - p1.x()) > FG_EPSILON ) { return (p0.y() - p1.y()) / (p0.x() - p1.x()); } else { return 1.0e+999; // really big number } } // Given a line segment specified by two endpoints p1 and p2, return // the y value of a point on the line that intersects with the // verticle line through x. Return true if an intersection is found, // false otherwise. static bool intersects( const Point3D& p0, const Point3D& p1, double x, Point3D *result ) { // equation of a line through (x0,y0) and (x1,y1): // // y = y1 + (x - x1) * (y0 - y1) / (x0 - x1) double y; if ( fabs(p0.x() - p1.x()) > FG_EPSILON ) { y = p1.y() + (x - p1.x()) * (p0.y() - p1.y()) / (p0.x() - p1.x()); } else { return false; } result->setx(x); result->sety(y); if ( p0.y() <= p1.y() ) { if ( (p0.y() <= y) && (y <= p1.y()) ) { return true; } } else { if ( (p0.y() >= y) && (y >= p1.y()) ) { return true; } } return false; } // calculate some "arbitrary" point inside the specified contour for // assigning attribute areas void FGPolygon::calc_point_inside( const int contour, const FGTriNodes& trinodes ) { Point3D tmp, min, ln, p1, p2, p3, m, result; int min_node_index = 0; int min_index = 0; int p1_index = 0; int p2_index = 0; int ln_index = 0; // 1. find a point on the specified contour, min, with smallest y // min.y() starts greater than the biggest possible lat (degrees) min.sety( 100.0 ); int_list_iterator current, last; current = poly[contour].begin(); last = poly[contour].end(); int counter = 0; for ( ; current != last; ++current ) { tmp = trinodes.get_node( *current ); if ( tmp.y() < min.y() ) { min = tmp; min_index = *current; min_node_index = counter; // cout << "min index = " << *current // << " value = " << min_y << endl; } else { // cout << " index = " << *current << endl; } ++counter; } cout << "min node index = " << min_node_index << endl; cout << "min index = " << min_index << " value = " << trinodes.get_node( min_index ) << " == " << min << endl; // 2. take midpoint, m, of min with neighbor having lowest // fabs(slope) if ( min_node_index == 0 ) { p1_index = poly[contour][1]; p2_index = poly[contour][poly[contour].size() - 1]; } else if ( min_node_index == (int)(poly[contour].size()) - 1 ) { p1_index = poly[contour][0]; p2_index = poly[contour][poly[contour].size() - 2]; } else { p1_index = poly[contour][min_node_index - 1]; p2_index = poly[contour][min_node_index + 1]; } p1 = trinodes.get_node( p1_index ); p2 = trinodes.get_node( p2_index ); double s1 = fabs( slope(min, p1) ); double s2 = fabs( slope(min, p2) ); if ( s1 < s2 ) { ln_index = p1_index; ln = p1; } else { ln_index = p2_index; ln = p2; } FGTriSeg base_leg( min_index, ln_index ); m.setx( (min.x() + ln.x()) / 2.0 ); m.sety( (min.y() + ln.y()) / 2.0 ); cout << "low mid point = " << m << endl; // 3. intersect vertical line through m and all other segments of // all other contours of this polygon. save point, p3, with // smallest y > m.y p3.sety(100); for ( int i = 0; i < (int)poly.size(); ++i ) { cout << "contour = " << i << " size = " << poly[i].size() << endl; for ( int j = 0; j < (int)(poly[i].size() - 1); ++j ) { // cout << " p1 = " << poly[i][j] << " p2 = " // << poly[i][j+1] << endl; p1_index = poly[i][j]; p2_index = poly[i][j+1]; p1 = trinodes.get_node( p1_index ); p2 = trinodes.get_node( p2_index ); if ( intersects(p1, p2, m.x(), &result) ) { // cout << "intersection = " << result << endl; if ( ( result.y() < p3.y() ) && ( result.y() > m.y() ) && ( base_leg != FGTriSeg(p1_index, p2_index) ) ) { p3 = result; } } } // cout << " p1 = " << poly[i][0] << " p2 = " // << poly[i][poly[i].size() - 1] << endl; p1_index = poly[i][0]; p2_index = poly[i][poly[i].size() - 1]; p1 = trinodes.get_node( p1_index ); p2 = trinodes.get_node( p2_index ); if ( intersects(p1, p2, m.x(), &result) ) { // cout << "intersection = " << result << endl; if ( ( result.y() < p3.y() ) && ( result.y() > m.y() ) && ( base_leg != FGTriSeg(p1_index, p2_index) ) ) { p3 = result; } } } if ( p3.y() < 100 ) { cout << "low intersection of other segment = " << p3 << endl; inside_list[contour].setx( (m.x() + p3.x()) / 2.0 ); inside_list[contour].sety( (m.y() + p3.y()) / 2.0 ); } else { cout << "Error: Failed to find a point inside :-(" << endl; inside_list[contour] = p3; // exit(-1); } // 4. take midpoint of p2 && m as an arbitrary point inside polygon cout << "inside point = " << inside_list[contour] << endl; }