// environment_ctrl.cxx -- manager for natural environment information. // // Written by David Megginson, started February 2002. // // Copyright (C) 2002 David Megginson - david@megginson.com // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. // // $Id$ #ifdef HAVE_CONFIG_H # include "config.h" #endif #include #include #include #include #include #include
#include
#include "fgmetar.hxx" #include "environment_ctrl.hxx" using std::sort; class AirportWithMetar : public FGAirport::AirportFilter { public: virtual bool passAirport(FGAirport* aApt) const { return aApt->getMetar(); } }; static AirportWithMetar airportWithMetarFilter; //////////////////////////////////////////////////////////////////////// // Implementation of FGEnvironmentCtrl abstract base class. //////////////////////////////////////////////////////////////////////// FGEnvironmentCtrl::FGEnvironmentCtrl () : _environment(0), _lon_deg(0), _lat_deg(0), _elev_ft(0) { } FGEnvironmentCtrl::~FGEnvironmentCtrl () { } void FGEnvironmentCtrl::setEnvironment (FGEnvironment * environment) { _environment = environment; } void FGEnvironmentCtrl::setLongitudeDeg (double lon_deg) { _lon_deg = lon_deg; } void FGEnvironmentCtrl::setLatitudeDeg (double lat_deg) { _lat_deg = lat_deg; } void FGEnvironmentCtrl::setElevationFt (double elev_ft) { _elev_ft = elev_ft; } void FGEnvironmentCtrl::setPosition (double lon_deg, double lat_deg, double elev_ft) { _lon_deg = lon_deg; _lat_deg = lat_deg; _elev_ft = elev_ft; } //////////////////////////////////////////////////////////////////////// // Implementation of FGInterpolateEnvironmentCtrl. //////////////////////////////////////////////////////////////////////// FGInterpolateEnvironmentCtrl::FGInterpolateEnvironmentCtrl () { altitude_n = fgGetNode("/position/altitude-ft", true); altitude_agl_n = fgGetNode("/position/altitude-agl-ft", true); boundary_transition_n = fgGetNode("/environment/config/boundary-transition-ft", false ); boundary_n = fgGetNode("/environment/config/boundary", true ); aloft_n = fgGetNode("/environment/config/aloft", true ); } FGInterpolateEnvironmentCtrl::~FGInterpolateEnvironmentCtrl () { unsigned int i; for (i = 0; i < _boundary_table.size(); i++) delete _boundary_table[i]; for (i = 0; i < _aloft_table.size(); i++) delete _aloft_table[i]; } void FGInterpolateEnvironmentCtrl::init () { read_table( boundary_n, _boundary_table); read_table( aloft_n, _aloft_table); } void FGInterpolateEnvironmentCtrl::reinit () { init(); } void FGInterpolateEnvironmentCtrl::read_table (const SGPropertyNode * node, vector &table) { double last_altitude_ft = 0.0; double sort_required = false; size_t i; for (i = 0; i < (size_t)node->nChildren(); i++) { const SGPropertyNode * child = node->getChild(i); if ( strcmp(child->getName(), "entry") == 0 && child->getStringValue("elevation-ft", "")[0] != '\0' && ( child->getDoubleValue("elevation-ft") > 0.1 || i == 0 ) ) { bucket * b; if( i < table.size() ) { // recycle existing bucket b = table[i]; } else { // more nodes than buckets in table, add a new one b = new bucket; table.push_back(b); } if (i > 0) b->environment.copy(table[i-1]->environment); b->environment.read(child); b->altitude_ft = b->environment.get_elevation_ft(); // check, if altitudes are in ascending order if( b->altitude_ft < last_altitude_ft ) sort_required = true; last_altitude_ft = b->altitude_ft; } } // remove leftover buckets while( table.size() > i ) { bucket * b = *(table.end() - 1); delete b; table.pop_back(); } if( sort_required ) sort(table.begin(), table.end(), bucket::lessThan); } void FGInterpolateEnvironmentCtrl::update (double delta_time_sec) { double altitude_ft = altitude_n->getDoubleValue(); double altitude_agl_ft = altitude_agl_n->getDoubleValue(); double boundary_transition = boundary_transition_n == NULL ? 500 : boundary_transition_n->getDoubleValue(); int length = _boundary_table.size(); if (length > 0) { // boundary table double boundary_limit = _boundary_table[length-1]->altitude_ft; if (boundary_limit >= altitude_agl_ft) { do_interpolate(_boundary_table, altitude_agl_ft, _environment); return; } else if ((boundary_limit + boundary_transition) >= altitude_agl_ft) { //TODO: this is 500ft above the top altitude of boundary layer //shouldn't this be +/-250 ft off of the top altitude? // both tables do_interpolate(_boundary_table, altitude_agl_ft, &env1); do_interpolate(_aloft_table, altitude_ft, &env2); double fraction = (altitude_agl_ft - boundary_limit) / boundary_transition; interpolate(&env1, &env2, fraction, _environment); return; } } // aloft table do_interpolate(_aloft_table, altitude_ft, _environment); } void FGInterpolateEnvironmentCtrl::do_interpolate (vector &table, double altitude_ft, FGEnvironment * environment) { int length = table.size(); if (length == 0) return; // Boundary conditions if ((length == 1) || (table[0]->altitude_ft >= altitude_ft)) { environment->copy(table[0]->environment); return; } else if (table[length-1]->altitude_ft <= altitude_ft) { environment->copy(table[length-1]->environment); return; } // Search the interpolation table for (int i = 0; i < length - 1; i++) { if ((i == length - 1) || (table[i]->altitude_ft <= altitude_ft)) { FGEnvironment * env1 = &(table[i]->environment); FGEnvironment * env2 = &(table[i+1]->environment); double fraction; if (table[i]->altitude_ft == table[i+1]->altitude_ft) fraction = 1.0; else fraction = ((altitude_ft - table[i]->altitude_ft) / (table[i+1]->altitude_ft - table[i]->altitude_ft)); interpolate(env1, env2, fraction, environment); return; } } } bool FGInterpolateEnvironmentCtrl::bucket::operator< (const bucket &b) const { return (altitude_ft < b.altitude_ft); } bool FGInterpolateEnvironmentCtrl::bucket::lessThan(bucket *a, bucket *b) { return (a->altitude_ft) < (b->altitude_ft); } //////////////////////////////////////////////////////////////////////// // Implementation of FGMetarCtrl. //////////////////////////////////////////////////////////////////////// FGMetarCtrl::FGMetarCtrl( SGSubsystem * environmentCtrl ) : metar_valid(false), setup_winds_aloft(true), wind_interpolation_required(true), station_elevation_ft(0.0), // Interpolation constant definitions. EnvironmentUpdatePeriodSec( 0.2 ), MaxWindChangeKtsSec( 0.2 ), MaxVisChangePercentSec( 0.05 ), MaxPressureChangeInHgSec( 0.0033 ), MaxCloudAltitudeChangeFtSec( 20.0 ), MaxCloudThicknessChangeFtSec( 50.0 ), MaxCloudInterpolationHeightFt( 5000.0 ), MaxCloudInterpolationDeltaFt( 4000.0 ), _environmentCtrl(environmentCtrl) { windModulator = new FGBasicWindModulator(); metar_base_n = fgGetNode( "/environment/metar", true ); station_id_n = metar_base_n->getNode("station-id", true ); station_elevation_n = metar_base_n->getNode("station-elevation-ft", true ); min_visibility_n = metar_base_n->getNode("min-visibility-m", true ); max_visibility_n = metar_base_n->getNode("max-visibility-m", true ); base_wind_range_from_n = metar_base_n->getNode("base-wind-range-from", true ); base_wind_range_to_n = metar_base_n->getNode("base-wind-range-to", true ); base_wind_speed_n = metar_base_n->getNode("base-wind-speed-kt", true ); base_wind_dir_n = metar_base_n->getNode("base-wind-dir-deg", true ); gust_wind_speed_n = metar_base_n->getNode("gust-wind-speed-kt", true ); temperature_n = metar_base_n->getNode("temperature-degc", true ); dewpoint_n = metar_base_n->getNode("dewpoint-degc", true ); humidity_n = metar_base_n->getNode("rel-humidity-norm", true ); pressure_n = metar_base_n->getNode("pressure-inhg", true ); clouds_n = metar_base_n->getNode("clouds", true ); rain_n = metar_base_n->getNode("rain-norm", true ); hail_n = metar_base_n->getNode("hail-norm", true ); snow_n = metar_base_n->getNode("snow-norm", true ); snow_cover_n = metar_base_n->getNode("snow-cover", true ); magnetic_variation_n = fgGetNode( "/environment/magnetic-variation-deg", true ); ground_elevation_n = fgGetNode( "/position/ground-elev-m", true ); longitude_n = fgGetNode( "/position/longitude-deg", true ); latitude_n = fgGetNode( "/position/latitude-deg", true ); environment_clouds_n = fgGetNode("/environment/clouds"); boundary_wind_speed_n = fgGetNode("/environment/config/boundary/entry/wind-speed-kt"); boundary_wind_from_heading_n = fgGetNode("/environment/config/boundary/entry/wind-from-heading-deg"); boundary_visibility_n = fgGetNode("/environment/config/boundary/entry/visibility-m"); boundary_sea_level_pressure_n = fgGetNode("/environment/config/boundary/entry/pressure-sea-level-inhg"); } FGMetarCtrl::~FGMetarCtrl () { } void FGMetarCtrl::bind () { fgTie("/environment/metar/valid", this, &FGMetarCtrl::get_valid ); fgTie("/environment/params/metar-updates-environment", this, &FGMetarCtrl::get_enabled, &FGMetarCtrl::set_enabled ); fgTie("/environment/params/metar-updates-winds-aloft", this, &FGMetarCtrl::get_setup_winds_aloft, &FGMetarCtrl::set_setup_winds_aloft ); } void FGMetarCtrl::unbind () { fgUntie("/environment/metar/valid"); fgUntie("/environment/params/metar-updates-environment"); fgUntie("/environment/params/metar-updates-winds-aloft"); } // use a "command" to set station temp at station elevation static void set_temp_at_altitude( float temp_degc, float altitude_ft ) { SGPropertyNode args; SGPropertyNode *node = args.getNode("temp-degc", 0, true); node->setFloatValue( temp_degc ); node = args.getNode("altitude-ft", 0, true); node->setFloatValue( altitude_ft ); globals->get_commands()->execute("set-outside-air-temp-degc", &args); } static void set_dewpoint_at_altitude( float dewpoint_degc, float altitude_ft ) { SGPropertyNode args; SGPropertyNode *node = args.getNode("dewpoint-degc", 0, true); node->setFloatValue( dewpoint_degc ); node = args.getNode("altitude-ft", 0, true); node->setFloatValue( altitude_ft ); globals->get_commands()->execute("set-dewpoint-temp-degc", &args); } /* Setup the wind nodes for a branch in the /environment/config//entry nodes Output properties: wind-from-heading-deg wind-speed-kt turbulence/magnitude-norm Input properties: wind-heading-change-deg how many degrees does the wind direction change at this level wind-speed-change-rel relative change of wind speed at this level turbulence/factor factor for the calculated turbulence magnitude at this level */ static void setupWindBranch( string branchName, double dir, double speed, double gust ) { SGPropertyNode_ptr branch = fgGetNode("/environment/config", true)->getNode(branchName,true); vector entries = branch->getChildren("entry"); for ( vector::iterator it = entries.begin(); it != entries.end(); it++) { // change wind direction as configured double layer_dir = dir + (*it)->getDoubleValue("wind-heading-change-deg", 0.0 ); if( layer_dir >= 360.0 ) layer_dir -= 360.0; if( layer_dir < 0.0 ) layer_dir += 360.0; (*it)->setDoubleValue("wind-from-heading-deg", layer_dir); double layer_speed = speed*(1 + (*it)->getDoubleValue("wind-speed-change-rel", 0.0 )); (*it)->setDoubleValue("wind-speed-kt", layer_speed ); // add some turbulence SGPropertyNode_ptr turbulence = (*it)->getNode("turbulence",true); double turbulence_norm = speed/50; if( gust > speed ) { turbulence_norm += (gust-speed)/25; } if( turbulence_norm > 1.0 ) turbulence_norm = 1.0; turbulence_norm *= turbulence->getDoubleValue("factor", 0.0 ); turbulence->setDoubleValue( "magnitude-norm", turbulence_norm ); } } static void setupWind( bool setup_aloft, double dir, double speed, double gust ) { setupWindBranch( "boundary", dir, speed, gust ); if( setup_aloft ) setupWindBranch( "aloft", dir, speed, gust ); } double FGMetarCtrl::interpolate_val(double currentval, double requiredval, double dt) { double dval = EnvironmentUpdatePeriodSec * dt; if (fabs(currentval - requiredval) < dval) return requiredval; if (currentval < requiredval) return (currentval + dval); if (currentval > requiredval) return (currentval - dval); return requiredval; } void FGMetarCtrl::init () { first_update = true; wind_interpolation_required = true; } void FGMetarCtrl::reinit () { init(); } static inline double convert_to_360( double d ) { if( d < 0.0 ) return d + 360.0; if( d >= 360.0 ) return d - 360.0; return d; } static inline double convert_to_180( double d ) { return d > 180.0 ? d - 360.0 : d; } void FGMetarCtrl::update(double dt) { if( dt <= 0 || !metar_valid ||!enabled) return; windModulator->update(dt); // Interpolate the current configuration closer to the actual METAR bool reinit_required = false; bool layer_rebuild_required = false; if (first_update) { double dir = base_wind_dir_n->getDoubleValue()+magnetic_variation_n->getDoubleValue(); double speed = base_wind_speed_n->getDoubleValue(); double gust = gust_wind_speed_n->getDoubleValue(); setupWind(setup_winds_aloft, dir, speed, gust); double metarvis = min_visibility_n->getDoubleValue(); fgDefaultWeatherValue("visibility-m", metarvis); double metarpressure = pressure_n->getDoubleValue(); fgDefaultWeatherValue("pressure-sea-level-inhg", metarpressure); // We haven't already loaded a METAR, so apply it immediately. vector layers = clouds_n->getChildren("layer"); vector::const_iterator layer; vector::const_iterator layers_end = layers.end(); int i; for (i = 0, layer = layers.begin(); layer != layers_end; ++layer, i++) { SGPropertyNode *target = environment_clouds_n->getChild("layer", i, true); target->setStringValue("coverage", (*layer)->getStringValue("coverage", "clear")); target->setDoubleValue("elevation-ft", (*layer)->getDoubleValue("elevation-ft")); target->setDoubleValue("thickness-ft", (*layer)->getDoubleValue("thickness-ft")); target->setDoubleValue("span-m", 40000.0); } first_update = false; reinit_required = true; layer_rebuild_required = true; } else { if( wind_interpolation_required ) { // Generate interpolated values between the METAR and the current // configuration. // Pick up the METAR wind values and convert them into a vector. double metar[2]; double metar_speed = base_wind_speed_n->getDoubleValue(); double metar_heading = base_wind_dir_n->getDoubleValue()+magnetic_variation_n->getDoubleValue(); metar[0] = metar_speed * sin(metar_heading * SG_DEGREES_TO_RADIANS ); metar[1] = metar_speed * cos(metar_heading * SG_DEGREES_TO_RADIANS); // Convert the current wind values and convert them into a vector double current[2]; double speed = boundary_wind_speed_n->getDoubleValue(); double dir_from = boundary_wind_from_heading_n->getDoubleValue();; current[0] = speed * sin(dir_from * SG_DEGREES_TO_RADIANS ); current[1] = speed * cos(dir_from * SG_DEGREES_TO_RADIANS ); // Determine the maximum component-wise value that the wind can change. // First we determine the fraction in the X and Y component, then // factor by the maximum wind change. double x = fabs(current[0] - metar[0]); double y = fabs(current[1] - metar[1]); // only interpolate if we have a difference if (x + y > 0.01 ) { double dx = x / (x + y); double dy = 1 - dx; double maxdx = dx * MaxWindChangeKtsSec; double maxdy = dy * MaxWindChangeKtsSec; // Interpolate each component separately. current[0] = interpolate_val(current[0], metar[0], maxdx); current[1] = interpolate_val(current[1], metar[1], maxdy); // Now convert back to polar coordinates. if ((fabs(current[0]) > 0.1) || (fabs(current[1]) > 0.1)) { // Some real wind to convert back from. Work out the speed // and direction value in degrees. speed = sqrt((current[0] * current[0]) + (current[1] * current[1])); dir_from = (atan2(current[0], current[1]) * SG_RADIANS_TO_DEGREES ); // Normalize the direction. if (dir_from < 0.0) dir_from += 360.0; SG_LOG( SG_GENERAL, SG_DEBUG, "Wind : " << dir_from << "@" << speed); } else { // Special case where there is no wind (otherwise atan2 barfs) speed = 0.0; } double gust = gust_wind_speed_n->getDoubleValue(); setupWind(setup_winds_aloft, dir_from, speed, gust); reinit_required = true; } else { wind_interpolation_required = false; } } else { // if(wind_interpolation_required) // interpolation of wind vector is finished, apply wind // variations and gusts for the boundary layer only bool wind_modulated = false; // start with the main wind direction double wind_dir = base_wind_dir_n->getDoubleValue()+magnetic_variation_n->getDoubleValue(); double min = convert_to_180(base_wind_range_from_n->getDoubleValue()+magnetic_variation_n->getDoubleValue()); double max = convert_to_180(base_wind_range_to_n->getDoubleValue()+magnetic_variation_n->getDoubleValue()); if( max > min ) { // if variable winds configured, modulate the wind direction double f = windModulator->get_direction_offset_norm(); wind_dir = min+(max-min)*f; double old = convert_to_180(boundary_wind_from_heading_n->getDoubleValue()); wind_dir = convert_to_360(fgGetLowPass(old, wind_dir, dt )); wind_modulated = true; } // start with main wind speed double wind_speed = base_wind_speed_n->getDoubleValue(); max = gust_wind_speed_n->getDoubleValue(); if( max > wind_speed ) { // if gusts are configured, modulate wind magnitude double f = windModulator->get_magnitude_factor_norm(); wind_speed = wind_speed+(max-wind_speed)*f; wind_speed = fgGetLowPass(boundary_wind_speed_n->getDoubleValue(), wind_speed, dt ); wind_modulated = true; } if( wind_modulated ) { setupWind(false, wind_dir, wind_speed, max); reinit_required = true; } } // Now handle the visibility. We convert both visibility values // to X-values, then interpolate from there, then back to real values. // The length_scale is fixed to 1000m, so the visibility changes by // by MaxVisChangePercentSec or 1000m X MaxVisChangePercentSec, // whichever is more. double vis = boundary_visibility_n->getDoubleValue();; double metarvis = min_visibility_n->getDoubleValue(); if( vis != metarvis ) { double currentxval = log(1000.0 + vis); double metarxval = log(1000.0 + metarvis); currentxval = interpolate_val(currentxval, metarxval, MaxVisChangePercentSec); // Now convert back from an X-value to a straightforward visibility. vis = exp(currentxval) - 1000.0; fgDefaultWeatherValue("visibility-m", vis); reinit_required = true; } double pressure = boundary_sea_level_pressure_n->getDoubleValue(); double metarpressure = pressure_n->getDoubleValue(); if( pressure != metarpressure ) { pressure = interpolate_val( pressure, metarpressure, MaxPressureChangeInHgSec ); fgDefaultWeatherValue("pressure-sea-level-inhg", pressure); reinit_required = true; } // Set the cloud layers by interpolating over the METAR versions. vector layers = clouds_n->getChildren("layer"); vector::const_iterator layer; vector::const_iterator layers_end = layers.end(); double aircraft_alt = fgGetDouble("/position/altitude-ft"); int i; for (i = 0, layer = layers.begin(); layer != layers_end; ++layer, i++) { SGPropertyNode *target = environment_clouds_n->getChild("layer", i, true); // In the case of clouds, we want to avoid writing if nothing has // changed, as these properties are tied to the renderer and will // cause the clouds to be updated, reseting the texture locations. // We don't interpolate the coverage values as no-matter how we // do it, it will be quite a sudden change of texture. Better to // have a single change than four or five. const char *coverage = (*layer)->getStringValue("coverage", "clear"); SGPropertyNode *cov = target->getNode("coverage", true); if (strcmp(cov->getStringValue(), coverage) != 0) { cov->setStringValue(coverage); layer_rebuild_required = true; } double required_alt = (*layer)->getDoubleValue("elevation-ft"); double current_alt = target->getDoubleValue("elevation-ft"); double required_thickness = (*layer)->getDoubleValue("thickness-ft"); SGPropertyNode *thickness = target->getNode("thickness-ft", true); if (current_alt < -9000 || required_alt < -9000 || fabs(aircraft_alt - required_alt) > MaxCloudInterpolationHeightFt || fabs(current_alt - required_alt) > MaxCloudInterpolationDeltaFt) { // We don't interpolate any layers that are // - too far above us to be visible // - too far below us to be visible // - with too large a difference to make interpolation sensible // - to or from -9999 (used as a placeholder) // - any values that are too high above us, if (current_alt != required_alt) target->setDoubleValue("elevation-ft", required_alt); if (thickness->getDoubleValue() != required_thickness) thickness->setDoubleValue(required_thickness); } else { // Interpolate the other values in the usual way if (current_alt != required_alt) { current_alt = interpolate_val(current_alt, required_alt, MaxCloudAltitudeChangeFtSec); target->setDoubleValue("elevation-ft", current_alt); } double current_thickness = thickness->getDoubleValue(); if (current_thickness != required_thickness) { current_thickness = interpolate_val(current_thickness, required_thickness, MaxCloudThicknessChangeFtSec); thickness->setDoubleValue(current_thickness); } } } } set_temp_at_altitude(temperature_n->getDoubleValue(), station_elevation_ft); set_dewpoint_at_altitude(dewpoint_n->getDoubleValue(), station_elevation_ft); //TODO: check if temperature/dewpoint have changed. This requires reinit. // Force an update of the 3D clouds if( layer_rebuild_required ) fgSetInt("/environment/rebuild-layers", 1 ); // Reinitializing of the environment controller required if( reinit_required ) _environmentCtrl->reinit(); } const char * FGMetarCtrl::get_metar(void) const { return metar.c_str(); } static const char *coverage_string[] = { "clear", "few", "scattered", "broken", "overcast" }; static const double thickness_value[] = { 0, 65, 600, 750, 1000 }; void FGMetarCtrl::set_metar( const char * metar_string ) { int i; metar = metar_string; SGSharedPtr m; try { m = new FGMetar( metar_string ); } catch( sg_io_exception ) { fprintf( stderr, "can't get metar: %s\n", metar_string ); metar_valid = false; return; } wind_interpolation_required = true; min_visibility_n->setDoubleValue( m->getMinVisibility().getVisibility_m() ); max_visibility_n->setDoubleValue( m->getMaxVisibility().getVisibility_m() ); const SGMetarVisibility *dirvis = m->getDirVisibility(); for (i = 0; i < 8; i++, dirvis++) { SGPropertyNode *vis = metar_base_n->getChild("visibility", i, true); double v = dirvis->getVisibility_m(); vis->setDoubleValue("min-m", v); vis->setDoubleValue("max-m", v); } base_wind_dir_n->setIntValue( m->getWindDir() ); base_wind_range_from_n->setIntValue( m->getWindRangeFrom() ); base_wind_range_to_n->setIntValue( m->getWindRangeTo() ); base_wind_speed_n->setDoubleValue( m->getWindSpeed_kt() ); gust_wind_speed_n->setDoubleValue( m->getGustSpeed_kt() ); temperature_n->setDoubleValue( m->getTemperature_C() ); dewpoint_n->setDoubleValue( m->getDewpoint_C() ); humidity_n->setDoubleValue( m->getRelHumidity() ); pressure_n->setDoubleValue( m->getPressure_inHg() ); // get station elevation to compute cloud base double station_elevation_ft = 0; { // 1. check the id given in the metar FGAirport* a = FGAirport::findByIdent(m->getId()); // 2. if unknown, find closest airport with metar to current position if( a == NULL ) { SGGeod pos = SGGeod::fromDeg(longitude_n->getDoubleValue(), latitude_n->getDoubleValue()); a = FGAirport::findClosest(pos, 10000.0, &airportWithMetarFilter); } // 3. otherwise use ground elevation if( a != NULL ) { station_elevation_ft = a->getElevation(); station_id_n->setStringValue( a->ident()); } else { station_elevation_ft = ground_elevation_n->getDoubleValue() * SG_METER_TO_FEET; station_id_n->setStringValue( m->getId()); } } station_elevation_n->setDoubleValue( station_elevation_ft ); vector cv = m->getClouds(); vector::const_iterator cloud, cloud_end = cv.end(); int layer_cnt = environment_clouds_n->getChildren("layer").size(); for (i = 0, cloud = cv.begin(); i < layer_cnt; i++) { const char *coverage = "clear"; double elevation = -9999.0; double thickness = 0.0; const double span = 40000.0; if (cloud != cloud_end) { int c = cloud->getCoverage(); coverage = coverage_string[c]; elevation = cloud->getAltitude_ft() + station_elevation_ft; thickness = thickness_value[c]; ++cloud; } SGPropertyNode *layer = clouds_n->getChild("layer", i, true ); // if the coverage has changed, a rebuild of the layer is needed if( strcmp(layer->getStringValue("coverage"), coverage ) ) { layer->setStringValue("coverage", coverage); } layer->setDoubleValue("elevation-ft", elevation); layer->setDoubleValue("thickness-ft", thickness); layer->setDoubleValue("span-m", span); } rain_n->setDoubleValue(m->getRain()); hail_n->setDoubleValue(m->getHail()); snow_n->setDoubleValue(m->getSnow()); snow_cover_n->setBoolValue(m->getSnowCover()); metar_valid = true; } #if defined(ENABLE_THREADS) /** * This class represents the thread of execution responsible for * fetching the metar data. */ class MetarThread : public OpenThreads::Thread { public: MetarThread( FGMetarFetcher * f ) : metar_fetcher(f) {} ~MetarThread() {} /** * Fetche the metar data from the NOAA. */ void run(); private: FGMetarFetcher * metar_fetcher; }; void MetarThread::run() { for( ;; ) { string airport_id = metar_fetcher->request_queue.pop(); if( airport_id.size() == 0 ) break; if( metar_fetcher->_error_count > 3 ) { SG_LOG( SG_GENERAL, SG_WARN, "Too many erros fetching METAR, thread stopped permanently."); break; } metar_fetcher->fetch( airport_id ); } } #endif FGMetarFetcher::FGMetarFetcher() : #if defined(ENABLE_THREADS) metar_thread(NULL), #endif fetch_timer(0.0), search_timer(0.0), error_timer(0.0), _stale_count(0), _error_count(0), enabled(false) { longitude_n = fgGetNode( "/position/longitude-deg", true ); latitude_n = fgGetNode( "/position/latitude-deg", true ); enable_n = fgGetNode( "/environment/params/real-world-weather-fetch", true ); proxy_host_n = fgGetNode("/sim/presets/proxy/host", true); proxy_port_n = fgGetNode("/sim/presets/proxy/port", true); proxy_auth_n = fgGetNode("/sim/presets/proxy/authentication", true); max_age_n = fgGetNode("/environment/params/metar-max-age-min", true); output_n = fgGetNode("/environment/metar/data", true ); #if defined(ENABLE_THREADS) metar_thread = new MetarThread(this); // FIXME: do we really need setProcessorAffinity()? // metar_thread->setProcessorAffinity(1); metar_thread->start(); #endif // ENABLE_THREADS } FGMetarFetcher::~FGMetarFetcher() { #if defined(ENABLE_THREADS) request_queue.push(""); metar_thread->join(); delete metar_thread; #endif // ENABLE_THREADS } void FGMetarFetcher::init () { fetch_timer = 0.0; search_timer = 0.0; error_timer = 0.0; _stale_count = 0; _error_count = 0; current_airport_id.clear(); /* Torsten Dreyer: hack to stop startup.nas complaining if metar arrives after nasal-dir-initialized is fired. Immediately fetch and wait for the METAR before continuing. This gets the /environment/metar/xxx properties filled before nasal-dir is initialized. Maybe the runway selection should happen here to make startup.nas obsolete? */ const char * startup_airport = fgGetString("/sim/startup/options/airport"); if( *startup_airport ) { FGAirport * a = FGAirport::getByIdent( startup_airport ); if( a ) { SGGeod pos = SGGeod::fromDeg(a->getLongitude(), a->getLatitude()); a = FGAirport::findClosest(pos, 10000.0, &airportWithMetarFilter); current_airport_id = a->getId(); fetch( current_airport_id ); } } } void FGMetarFetcher::reinit () { init(); } /* search for closest airport with metar every xx seconds */ static const int search_interval_sec = 60; /* fetch metar for airport, even if airport has not changed every xx seconds */ static const int fetch_interval_sec = 900; /* reset error counter after xxx seconds */ static const int error_timer_sec = 3; void FGMetarFetcher::update (double delta_time_sec) { fetch_timer -= delta_time_sec; search_timer -= delta_time_sec; error_timer -= delta_time_sec; if( error_timer <= 0.0 ) { error_timer = error_timer_sec; _error_count = 0; } if( enable_n->getBoolValue() == false ) { enabled = false; return; } // we were just enabled, reset all timers to // trigger immediate metar fetch if( !enabled ) { search_timer = 0.0; fetch_timer = 0.0; error_timer = error_timer_sec; enabled = true; } FGAirport * a = NULL; if( search_timer <= 0.0 ) { // search timer expired, search closest airport with metar SGGeod pos = SGGeod::fromDeg(longitude_n->getDoubleValue(), latitude_n->getDoubleValue()); a = FGAirport::findClosest(pos, 10000.0, &airportWithMetarFilter); search_timer = search_interval_sec; } if( a == NULL ) return; if( a->ident() != current_airport_id || fetch_timer <= 0 ) { // fetch timer expired or airport has changed, schedule a fetch current_airport_id = a->ident(); fetch_timer = fetch_interval_sec; #if defined(ENABLE_THREADS) // push this airport id into the queue for the worker thread request_queue.push( current_airport_id ); #else // if there is no worker thread, immediately fetch the data fetch( current_airport_id ); #endif } } void FGMetarFetcher::fetch( const string & id ) { if( enable_n->getBoolValue() == false ) return; SGSharedPtr result = NULL; // fetch current metar data try { string host = proxy_host_n->getStringValue(); string auth = proxy_auth_n->getStringValue(); string port = proxy_port_n->getStringValue(); result = new FGMetar( id, host, port, auth); long max_age = max_age_n->getLongValue(); long age = result->getAge_min(); if (max_age && age > max_age) { SG_LOG( SG_GENERAL, SG_WARN, "METAR data too old (" << age << " min)."); if (++_stale_count > 10) { _error_count = 1000; throw sg_io_exception("More than 10 stale METAR messages in a row." " Check your system time!"); } } else { _stale_count = 0; } } catch (const sg_io_exception& e) { SG_LOG( SG_GENERAL, SG_WARN, "Error fetching live weather data: " << e.getFormattedMessage().c_str() ); result = NULL; // remove METAR flag from the airport FGAirport * a = FGAirport::findByIdent( id ); if( a ) a->setMetar( false ); // immediately schedule a new search search_timer = 0.0; } // write the metar to the property node, the rest is done by the methods tied to this property // don't write the metar data, if real-weather-fetch has been disabled in the meantime if( result != NULL && enable_n->getBoolValue() == true ) output_n->setStringValue( result->getData() ); } // end of environment_ctrl.cxx