// flight.hxx -- define shared flight model parameters // // Written by Curtis Olson, started May 1997. // // Copyright (C) 1997 Curtis L. Olson - http://www.flightgear.org/~curt // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. // // $Id$ #ifndef _FLIGHT_HXX #define _FLIGHT_HXX #ifndef __cplusplus # error This library requires C++ #endif /* Required get_() `FGInterface::get_Longitude ()' `FGInterface::get_Latitude ()' `FGInterface::get_Altitude ()' `FGInterface::get_Phi ()' `FGInterface::get_Theta ()' `FGInterface::get_Psi ()' `FGInterface::get_V_equiv_kts ()' `FGInterface::get_Mass ()' `FGInterface::get_I_xx ()' `FGInterface::get_I_yy ()' `FGInterface::get_I_zz ()' `FGInterface::get_I_xz ()' `FGInterface::get_V_north ()' `FGInterface::get_V_east ()' `FGInterface::get_V_down ()' `FGInterface::get_P_Body ()' `FGInterface::get_Q_Body ()' `FGInterface::get_R_Body ()' `FGInterface::get_Gamma_vert_rad ()' `FGInterface::get_Climb_Rate ()' `FGInterface::get_Alpha ()' `FGInterface::get_Beta ()' `FGInterface::get_Runway_altitude ()' `FGInterface::get_Lon_geocentric ()' `FGInterface::get_Lat_geocentric ()' `FGInterface::get_Sea_level_radius ()' `FGInterface::get_Earth_position_angle ()' `FGInterface::get_Latitude_dot()' `FGInterface::get_Longitude_dot()' `FGInterface::get_Radius_dot()' `FGInterface::get_Dx_cg ()' `FGInterface::get_Dy_cg ()' `FGInterface::get_Dz_cg ()' `FGInterface::get_T_local_to_body_11 ()' ... `FGInterface::get_T_local_to_body_33 ()' `FGInterface::get_Radius_to_vehicle ()' */ #include #include #include #include #include #include #include #include SG_USING_STD(list); SG_USING_STD(vector); SG_USING_STD(string); typedef double FG_VECTOR_3[3]; // This is based heavily on LaRCsim/ls_generic.h class FGInterface : public SGSubsystem { private: // Has the init() method been called. This is used to delay // initialization until scenery can be loaded and we know the true // ground elevation. bool inited; // Have we bound to the property system bool bound; // periodic update management variable. This is a scheme to run // the fdm with a fixed delta-t. We control how many iteration of // the fdm to run with the fixed dt based on the elapsed time from // the last update. This allows us to maintain sync with the real // time clock, even though each frame could take a random amount // of time. Since "dt" is unlikely to divide evenly into the // elapse time, we keep track of the remainder and add it into the // next elapsed time. This yields a small amount of temporal // jitter ( < dt ) but in practice seems to work well. // double delta_t; // delta "t" // SGTimeStamp time_stamp; // time stamp of last run // long elapsed; // time elapsed since last run double remainder; // remainder time from last run // int multi_loop; // number of iterations of "delta_t" to run // Pilot location rel to ref pt FG_VECTOR_3 d_pilot_rp_body_v; // CG position w.r.t. ref. point FG_VECTOR_3 d_cg_rp_body_v; // Forces FG_VECTOR_3 f_body_total_v; FG_VECTOR_3 f_local_total_v; FG_VECTOR_3 f_aero_v; FG_VECTOR_3 f_engine_v; FG_VECTOR_3 f_gear_v; // Moments FG_VECTOR_3 m_total_rp_v; FG_VECTOR_3 m_total_cg_v; FG_VECTOR_3 m_aero_v; FG_VECTOR_3 m_engine_v; FG_VECTOR_3 m_gear_v; // Accelerations FG_VECTOR_3 v_dot_local_v; FG_VECTOR_3 v_dot_body_v; FG_VECTOR_3 a_cg_body_v; FG_VECTOR_3 a_pilot_body_v; FG_VECTOR_3 n_cg_body_v; FG_VECTOR_3 n_pilot_body_v; FG_VECTOR_3 omega_dot_body_v; // Velocities FG_VECTOR_3 v_local_v; FG_VECTOR_3 v_local_rel_ground_v; // V rel w.r.t. earth surface FG_VECTOR_3 v_local_airmass_v; // velocity of airmass (steady winds) FG_VECTOR_3 v_local_rel_airmass_v; // velocity of veh. relative to airmass FG_VECTOR_3 v_local_gust_v; // linear turbulence components, L frame FG_VECTOR_3 v_wind_body_v; // Wind-relative velocities in body axis FG_VECTOR_3 omega_body_v; // Angular B rates FG_VECTOR_3 omega_local_v; // Angular L rates FG_VECTOR_3 omega_total_v; // Diff btw B & L FG_VECTOR_3 euler_rates_v; FG_VECTOR_3 geocentric_rates_v; // Geocentric linear velocities // Positions FG_VECTOR_3 geocentric_position_v; FG_VECTOR_3 geodetic_position_v; FG_VECTOR_3 euler_angles_v; // Miscellaneous Quantities FG_VECTOR_3 d_cg_rwy_local_v; // CG rel. to rwy in local coords FG_VECTOR_3 d_cg_rwy_rwy_v; // CG relative to rwy, in rwy coordinates FG_VECTOR_3 d_pilot_rwy_local_v; // pilot rel. to rwy in local coords FG_VECTOR_3 d_pilot_rwy_rwy_v; // pilot rel. to rwy, in rwy coords. // Inertias double mass, i_xx, i_yy, i_zz, i_xz; // Normal Load Factor double nlf; // Velocities double v_rel_wind, v_true_kts, v_rel_ground, v_inertial; double v_ground_speed, v_equiv, v_equiv_kts; double v_calibrated, v_calibrated_kts; // Miscellaneious Quantities double t_local_to_body_m[3][3]; // Transformation matrix L to B double gravity; // Local acceleration due to G double centrifugal_relief; // load factor reduction due to speed double alpha, beta, alpha_dot, beta_dot; // in radians double cos_alpha, sin_alpha, cos_beta, sin_beta; double cos_phi, sin_phi, cos_theta, sin_theta, cos_psi, sin_psi; double gamma_vert_rad, gamma_horiz_rad; // Flight path angles double sigma, density, v_sound, mach_number; double static_pressure, total_pressure, impact_pressure; double dynamic_pressure; double static_temperature, total_temperature; double sea_level_radius, earth_position_angle; double runway_altitude, runway_latitude, runway_longitude; double runway_heading; double radius_to_rwy; double climb_rate; // in feet per second double sin_lat_geocentric, cos_lat_geocentric; double sin_longitude, cos_longitude; double sin_latitude, cos_latitude; double altitude_agl; double daux[16]; // auxilliary doubles float faux[16]; // auxilliary floats int iaux[16]; // auxilliary ints // SGTimeStamp valid_stamp; // time this record is valid // SGTimeStamp next_stamp; // time this record is valid // the ground cache object itself. FGGroundCache ground_cache; protected: int _calc_multiloop (double dt); public: // deliberately not virtual so that // FGInterface constructor will call // the right version void _setup(); void _busdump(void); void _updateGeodeticPosition( double lat, double lon, double alt ); void _updateGeocentricPosition( double lat_geoc, double lon, double alt ); void _updateWeather( void ); inline void _set_Inertias( double m, double xx, double yy, double zz, double xz) { mass = m; i_xx = xx; i_yy = yy; i_zz = zz; i_xz = xz; } inline void _set_CG_Position( double dx, double dy, double dz ) { d_cg_rp_body_v[0] = dx; d_cg_rp_body_v[1] = dy; d_cg_rp_body_v[2] = dz; } inline void _set_Accels_Local( double north, double east, double down ) { v_dot_local_v[0] = north; v_dot_local_v[1] = east; v_dot_local_v[2] = down; } inline void _set_Accels_Body( double u, double v, double w ) { v_dot_body_v[0] = u; v_dot_body_v[1] = v; v_dot_body_v[2] = w; } inline void _set_Accels_CG_Body( double x, double y, double z ) { a_cg_body_v[0] = x; a_cg_body_v[1] = y; a_cg_body_v[2] = z; } inline void _set_Accels_Pilot_Body( double x, double y, double z ) { a_pilot_body_v[0] = x; a_pilot_body_v[1] = y; a_pilot_body_v[2] = z; } inline void _set_Accels_CG_Body_N( double x, double y, double z ) { n_cg_body_v[0] = x; n_cg_body_v[1] = y; n_cg_body_v[2] = z; } void _set_Nlf(double n) { nlf=n; } inline void _set_Velocities_Local( double north, double east, double down ){ v_local_v[0] = north; v_local_v[1] = east; v_local_v[2] = down; } inline void _set_Velocities_Ground(double north, double east, double down) { v_local_rel_ground_v[0] = north; v_local_rel_ground_v[1] = east; v_local_rel_ground_v[2] = down; } inline void _set_Velocities_Local_Airmass( double north, double east, double down) { v_local_airmass_v[0] = north; v_local_airmass_v[1] = east; v_local_airmass_v[2] = down; } inline void _set_Velocities_Wind_Body( double u, double v, double w) { v_wind_body_v[0] = u; v_wind_body_v[1] = v; v_wind_body_v[2] = w; } inline void _set_V_rel_wind(double vt) { v_rel_wind = vt; } inline void _set_V_ground_speed( double v) { v_ground_speed = v; } inline void _set_V_equiv_kts( double kts ) { v_equiv_kts = kts; } inline void _set_V_calibrated_kts( double kts ) { v_calibrated_kts = kts; } inline void _set_Omega_Body( double p, double q, double r ) { omega_body_v[0] = p; omega_body_v[1] = q; omega_body_v[2] = r; } inline void _set_Euler_Rates( double phi, double theta, double psi ) { euler_rates_v[0] = phi; euler_rates_v[1] = theta; euler_rates_v[2] = psi; } inline void _set_Geocentric_Rates( double lat, double lon, double rad ) { geocentric_rates_v[0] = lat; geocentric_rates_v[1] = lon; geocentric_rates_v[2] = rad; } #if 0 inline void _set_Radius_to_vehicle(double radius) { geocentric_position_v[2] = radius; } #endif inline void _set_Geocentric_Position( double lat, double lon, double rad ) { geocentric_position_v[0] = lat; geocentric_position_v[1] = lon; geocentric_position_v[2] = rad; } inline void _set_Latitude(double lat) { geodetic_position_v[0] = lat; } inline void _set_Longitude(double lon) { geodetic_position_v[1] = lon; } inline void _set_Altitude(double altitude) { geodetic_position_v[2] = altitude; } inline void _set_Altitude_AGL(double agl) { altitude_agl = agl; } inline void _set_Geodetic_Position( double lat, double lon, double alt ) { geodetic_position_v[0] = lat; geodetic_position_v[1] = lon; geodetic_position_v[2] = alt; } inline void _set_Euler_Angles( double phi, double theta, double psi ) { euler_angles_v[0] = phi; euler_angles_v[1] = theta; euler_angles_v[2] = psi; } inline void _set_T_Local_to_Body( int i, int j, double value) { t_local_to_body_m[i-1][j-1] = value; } inline void _set_T_Local_to_Body( double m[3][3] ) { int i, j; for ( i = 0; i < 3; i++ ) { for ( j = 0; j < 3; j++ ) { t_local_to_body_m[i][j] = m[i][j]; } } } inline void _set_Alpha( double a ) { alpha = a; } inline void _set_Beta( double b ) { beta = b; } inline void _set_Cos_phi( double cp ) { cos_phi = cp; } inline void _set_Cos_theta( double ct ) { cos_theta = ct; } inline void _set_Gamma_vert_rad( double gv ) { gamma_vert_rad = gv; } inline void _set_Density( double d ) { density = d; } inline void _set_Mach_number( double m ) { mach_number = m; } inline void _set_Static_pressure( double sp ) { static_pressure = sp; } inline void _set_Static_temperature( double t ) { static_temperature = t; } inline void _set_Sea_level_radius( double r ) { sea_level_radius = r; } inline void _set_Earth_position_angle(double a) { earth_position_angle = a; } inline void _set_Runway_altitude( double alt ) { runway_altitude = alt; } inline void _set_Climb_Rate(double rate) { climb_rate = rate; } inline void _set_sin_lat_geocentric(double parm) { sin_lat_geocentric = sin(parm); } inline void _set_cos_lat_geocentric(double parm) { cos_lat_geocentric = cos(parm); } inline void _set_sin_cos_longitude(double parm) { sin_longitude = sin(parm); cos_longitude = cos(parm); } inline void _set_sin_cos_latitude(double parm) { sin_latitude = sin(parm); cos_latitude = cos(parm); } inline void _set_daux( int n, double value ) { daux[n] = value; } inline void _set_faux( int n, float value ) { faux[n] = value; } inline void _set_iaux( int n, int value ) { iaux[n] = value; } public: FGInterface(); FGInterface( double dt ); virtual ~FGInterface(); virtual void init (); virtual void bind (); virtual void unbind (); virtual void update(double dt); virtual bool ToggleDataLogging(bool state) { return false; } virtual bool ToggleDataLogging(void) { return false; } // Define the various supported flight models (many not yet implemented) enum { // Magic Carpet mode FG_MAGICCARPET = 0, // The NASA LaRCsim (Navion) flight model FG_LARCSIM = 1, // Jon S. Berndt's new FDM written from the ground up in C++ FG_JSBSIM = 2, // Christian's hot air balloon simulation FG_BALLOONSIM = 3, // Aeronautical DEvelopment AGEncy, Bangalore India FG_ADA = 4, // The following aren't implemented but are here to spark // thoughts and discussions, and maybe even action. FG_ACM = 5, FG_SUPER_SONIC = 6, FG_HELICOPTER = 7, FG_AUTOGYRO = 8, FG_PARACHUTE = 9, // Driven externally via a serial port, net, file, etc. FG_EXTERNAL = 10 }; // initialization inline bool get_inited() const { return inited; } inline void set_inited( bool value ) { inited = value; } inline bool get_bound() const { return bound; } //perform initializion that is common to all FDM's void common_init(); // time and update management values // inline double get_delta_t() const { return delta_t; } // inline void set_delta_t( double dt ) { delta_t = dt; } // inline SGTimeStamp get_time_stamp() const { return time_stamp; } // inline void set_time_stamp( SGTimeStamp s ) { time_stamp = s; } // inline void stamp() { time_stamp.stamp(); } // inline long get_elapsed() const { return elapsed; } // inline void set_elapsed( long e ) { elapsed = e; } // inline long get_remainder() const { return remainder; } // inline void set_remainder( long r ) { remainder = r; } // inline int get_multi_loop() const { return multi_loop; } // inline void set_multi_loop( int ml ) { multi_loop = ml; } // Positions virtual void set_Latitude(double lat); // geocentric virtual void set_Longitude(double lon); virtual void set_Altitude(double alt); // triggers re-calc of AGL altitude virtual void set_AltitudeAGL(double altagl); // and vice-versa virtual void set_Latitude_deg (double lat) { set_Latitude(lat * SGD_DEGREES_TO_RADIANS); } virtual void set_Longitude_deg (double lon) { set_Longitude(lon * SGD_DEGREES_TO_RADIANS); } // Speeds -- setting any of these will trigger a re-calc of the rest virtual void set_V_calibrated_kts(double vc); virtual void set_Mach_number(double mach); virtual void set_Velocities_Local( double north, double east, double down ); inline void set_V_north (double north) { set_Velocities_Local(north, v_local_v[1], v_local_v[2]); } inline void set_V_east (double east) { set_Velocities_Local(v_local_v[0], east, v_local_v[2]); } inline void set_V_down (double down) { set_Velocities_Local(v_local_v[0], v_local_v[1], down); } virtual void set_Velocities_Wind_Body( double u, double v, double w); virtual void set_uBody (double uBody) { set_Velocities_Wind_Body(uBody, v_wind_body_v[1], v_wind_body_v[2]); } virtual void set_vBody (double vBody) { set_Velocities_Wind_Body(v_wind_body_v[0], vBody, v_wind_body_v[2]); } virtual void set_wBody (double wBody) { set_Velocities_Wind_Body(v_wind_body_v[0], v_wind_body_v[1], wBody); } // Euler angles virtual void set_Euler_Angles( double phi, double theta, double psi ); virtual void set_Phi (double phi) { set_Euler_Angles(phi, get_Theta(), get_Psi()); } virtual void set_Theta (double theta) { set_Euler_Angles(get_Phi(), theta, get_Psi()); } virtual void set_Psi (double psi) { set_Euler_Angles(get_Phi(), get_Theta(), psi); } virtual void set_Phi_deg (double phi) { set_Phi(phi * SGD_DEGREES_TO_RADIANS); } virtual void set_Theta_deg (double theta) { set_Theta(theta * SGD_DEGREES_TO_RADIANS); } virtual void set_Psi_deg (double psi) { set_Psi(psi * SGD_DEGREES_TO_RADIANS); } // Flight Path virtual void set_Climb_Rate( double roc); virtual void set_Gamma_vert_rad( double gamma); // Earth virtual void set_Static_pressure(double p); virtual void set_Static_temperature(double T); virtual void set_Density(double rho); virtual void set_Velocities_Local_Airmass (double wnorth, double weast, double wdown ); // ========== Mass properties and geometry values ========== // Inertias inline double get_Mass() const { return mass; } inline double get_I_xx() const { return i_xx; } inline double get_I_yy() const { return i_yy; } inline double get_I_zz() const { return i_zz; } inline double get_I_xz() const { return i_xz; } // Pilot location rel to ref pt // inline double * get_D_pilot_rp_body_v() { // return d_pilot_rp_body_v; // } // inline double get_Dx_pilot() const { return d_pilot_rp_body_v[0]; } // inline double get_Dy_pilot() const { return d_pilot_rp_body_v[1]; } // inline double get_Dz_pilot() const { return d_pilot_rp_body_v[2]; } /* inline void set_Pilot_Location( double dx, double dy, double dz ) { d_pilot_rp_body_v[0] = dx; d_pilot_rp_body_v[1] = dy; d_pilot_rp_body_v[2] = dz; } */ // CG position w.r.t. ref. point // inline double * get_D_cg_rp_body_v() { return d_cg_rp_body_v; } inline double get_Dx_cg() const { return d_cg_rp_body_v[0]; } inline double get_Dy_cg() const { return d_cg_rp_body_v[1]; } inline double get_Dz_cg() const { return d_cg_rp_body_v[2]; } // ========== Forces ========== // inline double * get_F_body_total_v() { return f_body_total_v; } // inline double get_F_X() const { return f_body_total_v[0]; } // inline double get_F_Y() const { return f_body_total_v[1]; } // inline double get_F_Z() const { return f_body_total_v[2]; } /* inline void set_Forces_Body_Total( double x, double y, double z ) { f_body_total_v[0] = x; f_body_total_v[1] = y; f_body_total_v[2] = z; } */ // inline double * get_F_local_total_v() { return f_local_total_v; } // inline double get_F_north() const { return f_local_total_v[0]; } // inline double get_F_east() const { return f_local_total_v[1]; } // inline double get_F_down() const { return f_local_total_v[2]; } /* inline void set_Forces_Local_Total( double x, double y, double z ) { f_local_total_v[0] = x; f_local_total_v[1] = y; f_local_total_v[2] = z; } */ // inline double * get_F_aero_v() { return f_aero_v; } // inline double get_F_X_aero() const { return f_aero_v[0]; } // inline double get_F_Y_aero() const { return f_aero_v[1]; } // inline double get_F_Z_aero() const { return f_aero_v[2]; } /* inline void set_Forces_Aero( double x, double y, double z ) { f_aero_v[0] = x; f_aero_v[1] = y; f_aero_v[2] = z; } */ // inline double * get_F_engine_v() { return f_engine_v; } // inline double get_F_X_engine() const { return f_engine_v[0]; } // inline double get_F_Y_engine() const { return f_engine_v[1]; } // inline double get_F_Z_engine() const { return f_engine_v[2]; } /* inline void set_Forces_Engine( double x, double y, double z ) { f_engine_v[0] = x; f_engine_v[1] = y; f_engine_v[2] = z; } */ // inline double * get_F_gear_v() { return f_gear_v; } // inline double get_F_X_gear() const { return f_gear_v[0]; } // inline double get_F_Y_gear() const { return f_gear_v[1]; } // inline double get_F_Z_gear() const { return f_gear_v[2]; } /* inline void set_Forces_Gear( double x, double y, double z ) { f_gear_v[0] = x; f_gear_v[1] = y; f_gear_v[2] = z; } */ // ========== Moments ========== // inline double * get_M_total_rp_v() { return m_total_rp_v; } // inline double get_M_l_rp() const { return m_total_rp_v[0]; } // inline double get_M_m_rp() const { return m_total_rp_v[1]; } // inline double get_M_n_rp() const { return m_total_rp_v[2]; } /* inline void set_Moments_Total_RP( double l, double m, double n ) { m_total_rp_v[0] = l; m_total_rp_v[1] = m; m_total_rp_v[2] = n; } */ // inline double * get_M_total_cg_v() { return m_total_cg_v; } // inline double get_M_l_cg() const { return m_total_cg_v[0]; } // inline double get_M_m_cg() const { return m_total_cg_v[1]; } // inline double get_M_n_cg() const { return m_total_cg_v[2]; } /* inline void set_Moments_Total_CG( double l, double m, double n ) { m_total_cg_v[0] = l; m_total_cg_v[1] = m; m_total_cg_v[2] = n; } */ // inline double * get_M_aero_v() { return m_aero_v; } // inline double get_M_l_aero() const { return m_aero_v[0]; } // inline double get_M_m_aero() const { return m_aero_v[1]; } // inline double get_M_n_aero() const { return m_aero_v[2]; } /* inline void set_Moments_Aero( double l, double m, double n ) { m_aero_v[0] = l; m_aero_v[1] = m; m_aero_v[2] = n; } */ // inline double * get_M_engine_v() { return m_engine_v; } // inline double get_M_l_engine() const { return m_engine_v[0]; } // inline double get_M_m_engine() const { return m_engine_v[1]; } // inline double get_M_n_engine() const { return m_engine_v[2]; } /* inline void set_Moments_Engine( double l, double m, double n ) { m_engine_v[0] = l; m_engine_v[1] = m; m_engine_v[2] = n; } */ // inline double * get_M_gear_v() { return m_gear_v; } // inline double get_M_l_gear() const { return m_gear_v[0]; } // inline double get_M_m_gear() const { return m_gear_v[1]; } // inline double get_M_n_gear() const { return m_gear_v[2]; } /* inline void set_Moments_Gear( double l, double m, double n ) { m_gear_v[0] = l; m_gear_v[1] = m; m_gear_v[2] = n; } */ // ========== Accelerations ========== // inline double * get_V_dot_local_v() { return v_dot_local_v; } inline double get_V_dot_north() const { return v_dot_local_v[0]; } inline double get_V_dot_east() const { return v_dot_local_v[1]; } inline double get_V_dot_down() const { return v_dot_local_v[2]; } // inline double * get_V_dot_body_v() { return v_dot_body_v; } inline double get_U_dot_body() const { return v_dot_body_v[0]; } inline double get_V_dot_body() const { return v_dot_body_v[1]; } inline double get_W_dot_body() const { return v_dot_body_v[2]; } // inline double * get_A_cg_body_v() { return a_cg_body_v; } inline double get_A_X_cg() const { return a_cg_body_v[0]; } inline double get_A_Y_cg() const { return a_cg_body_v[1]; } inline double get_A_Z_cg() const { return a_cg_body_v[2]; } // inline double * get_A_pilot_body_v() { return a_pilot_body_v; } inline double get_A_X_pilot() const { return a_pilot_body_v[0]; } inline double get_A_Y_pilot() const { return a_pilot_body_v[1]; } inline double get_A_Z_pilot() const { return a_pilot_body_v[2]; } // inline double * get_N_cg_body_v() { return n_cg_body_v; } inline double get_N_X_cg() const { return n_cg_body_v[0]; } inline double get_N_Y_cg() const { return n_cg_body_v[1]; } inline double get_N_Z_cg() const { return n_cg_body_v[2]; } // inline double * get_N_pilot_body_v() { return n_pilot_body_v; } // inline double get_N_X_pilot() const { return n_pilot_body_v[0]; } // inline double get_N_Y_pilot() const { return n_pilot_body_v[1]; } // inline double get_N_Z_pilot() const { return n_pilot_body_v[2]; } // inline void set_Accels_Pilot_Body_N( double x, double y, double z ) { // n_pilot_body_v[0] = x; // n_pilot_body_v[1] = y; // n_pilot_body_v[2] = z; // } inline double get_Nlf(void) const { return nlf; } // inline double * get_Omega_dot_body_v() { return omega_dot_body_v; } // inline double get_P_dot_body() const { return omega_dot_body_v[0]; } // inline double get_Q_dot_body() const { return omega_dot_body_v[1]; } // inline double get_R_dot_body() const { return omega_dot_body_v[2]; } /* inline void set_Accels_Omega( double p, double q, double r ) { omega_dot_body_v[0] = p; omega_dot_body_v[1] = q; omega_dot_body_v[2] = r; } */ // ========== Velocities ========== // inline double * get_V_local_v() { return v_local_v; } inline double get_V_north() const { return v_local_v[0]; } inline double get_V_east() const { return v_local_v[1]; } inline double get_V_down() const { return v_local_v[2]; } inline double get_uBody () const { return v_wind_body_v[0]; } inline double get_vBody () const { return v_wind_body_v[1]; } inline double get_wBody () const { return v_wind_body_v[2]; } // Please dont comment these out. fdm=ada uses these (see // cockpit.cxx) ---> inline double * get_V_local_rel_ground_v() { return v_local_rel_ground_v; } inline double get_V_north_rel_ground() const { return v_local_rel_ground_v[0]; } inline double get_V_east_rel_ground() const { return v_local_rel_ground_v[1]; } inline double get_V_down_rel_ground() const { return v_local_rel_ground_v[2]; } // <--- fdm=ada uses these (see cockpit.cxx) // inline double * get_V_local_airmass_v() { return v_local_airmass_v; } inline double get_V_north_airmass() const { return v_local_airmass_v[0]; } inline double get_V_east_airmass() const { return v_local_airmass_v[1]; } inline double get_V_down_airmass() const { return v_local_airmass_v[2]; } // airmass // inline double * get_V_local_rel_airmass_v() { // return v_local_rel_airmass_v; // } // inline double get_V_north_rel_airmass() const { // return v_local_rel_airmass_v[0]; // } // inline double get_V_east_rel_airmass() const { // return v_local_rel_airmass_v[1]; // } // inline double get_V_down_rel_airmass() const { // return v_local_rel_airmass_v[2]; // } /* inline void set_Velocities_Local_Rel_Airmass( double north, double east, double down) { v_local_rel_airmass_v[0] = north; v_local_rel_airmass_v[1] = east; v_local_rel_airmass_v[2] = down; } */ // inline double * get_V_local_gust_v() { return v_local_gust_v; } // inline double get_U_gust() const { return v_local_gust_v[0]; } // inline double get_V_gust() const { return v_local_gust_v[1]; } // inline double get_W_gust() const { return v_local_gust_v[2]; } /* inline void set_Velocities_Gust( double u, double v, double w) { v_local_gust_v[0] = u; v_local_gust_v[1] = v; v_local_gust_v[2] = w; } */ // inline double * get_V_wind_body_v() { return v_wind_body_v; } inline double get_U_body() const { return v_wind_body_v[0]; } inline double get_V_body() const { return v_wind_body_v[1]; } inline double get_W_body() const { return v_wind_body_v[2]; } inline double get_V_rel_wind() const { return v_rel_wind; } // inline void set_V_rel_wind(double wind) { v_rel_wind = wind; } inline double get_V_true_kts() const { return v_true_kts; } // inline void set_V_true_kts(double kts) { v_true_kts = kts; } // inline double get_V_rel_ground() const { return v_rel_ground; } // inline void set_V_rel_ground( double v ) { v_rel_ground = v; } // inline double get_V_inertial() const { return v_inertial; } // inline void set_V_inertial(double v) { v_inertial = v; } inline double get_V_ground_speed() const { return v_ground_speed; } // inline double get_V_equiv() const { return v_equiv; } // inline void set_V_equiv( double v ) { v_equiv = v; } inline double get_V_equiv_kts() const { return v_equiv_kts; } //inline double get_V_calibrated() const { return v_calibrated; } //inline void set_V_calibrated( double v ) { v_calibrated = v; } inline double get_V_calibrated_kts() const { return v_calibrated_kts; } // inline double * get_Omega_body_v() { return omega_body_v; } inline double get_P_body() const { return omega_body_v[0]; } inline double get_Q_body() const { return omega_body_v[1]; } inline double get_R_body() const { return omega_body_v[2]; } // inline double * get_Omega_local_v() { return omega_local_v; } // inline double get_P_local() const { return omega_local_v[0]; } // inline double get_Q_local() const { return omega_local_v[1]; } // inline double get_R_local() const { return omega_local_v[2]; } /* inline void set_Omega_Local( double p, double q, double r ) { omega_local_v[0] = p; omega_local_v[1] = q; omega_local_v[2] = r; } */ // inline double * get_Omega_total_v() { return omega_total_v; } // inline double get_P_total() const { return omega_total_v[0]; } // inline double get_Q_total() const { return omega_total_v[1]; } // inline double get_R_total() const { return omega_total_v[2]; } /* inline void set_Omega_Total( double p, double q, double r ) { omega_total_v[0] = p; omega_total_v[1] = q; omega_total_v[2] = r; } */ // inline double * get_Euler_rates_v() { return euler_rates_v; } inline double get_Phi_dot() const { return euler_rates_v[0]; } inline double get_Theta_dot() const { return euler_rates_v[1]; } inline double get_Psi_dot() const { return euler_rates_v[2]; } inline double get_Phi_dot_degps() const { return euler_rates_v[0] * SGD_RADIANS_TO_DEGREES; } inline double get_Theta_dot_degps() const { return euler_rates_v[1] * SGD_RADIANS_TO_DEGREES; } inline double get_Psi_dot_degps() const { return euler_rates_v[2] * SGD_RADIANS_TO_DEGREES; } // inline double * get_Geocentric_rates_v() { return geocentric_rates_v; } inline double get_Latitude_dot() const { return geocentric_rates_v[0]; } inline double get_Longitude_dot() const { return geocentric_rates_v[1]; } inline double get_Radius_dot() const { return geocentric_rates_v[2]; } // ========== Positions ========== // inline double * get_Geocentric_position_v() { // return geocentric_position_v; // } inline double get_Lat_geocentric() const { return geocentric_position_v[0]; } inline double get_Lon_geocentric() const { return geocentric_position_v[1]; } inline double get_Radius_to_vehicle() const { return geocentric_position_v[2]; } // inline double * get_Geodetic_position_v() { return geodetic_position_v; } inline double get_Latitude() const { return geodetic_position_v[0]; } inline double get_Longitude() const { return geodetic_position_v[1]; } inline double get_Altitude() const { return geodetic_position_v[2]; } inline double get_Altitude_AGL(void) const { return altitude_agl; } inline double get_Latitude_deg () const { return get_Latitude() * SGD_RADIANS_TO_DEGREES; } inline double get_Longitude_deg () const { return get_Longitude() * SGD_RADIANS_TO_DEGREES; } // inline double * get_Euler_angles_v() { return euler_angles_v; } inline double get_Phi() const { return euler_angles_v[0]; } inline double get_Theta() const { return euler_angles_v[1]; } inline double get_Psi() const { return euler_angles_v[2]; } inline double get_Phi_deg () const { return get_Phi() * SGD_RADIANS_TO_DEGREES; } inline double get_Theta_deg () const { return get_Theta() * SGD_RADIANS_TO_DEGREES; } inline double get_Psi_deg () const { return get_Psi() * SGD_RADIANS_TO_DEGREES; } // ========== Miscellaneous quantities ========== // inline double * get_T_local_to_body_m() { return t_local_to_body_m; } inline double get_T_local_to_body_11() const { return t_local_to_body_m[0][0]; } inline double get_T_local_to_body_12() const { return t_local_to_body_m[0][1]; } inline double get_T_local_to_body_13() const { return t_local_to_body_m[0][2]; } inline double get_T_local_to_body_21() const { return t_local_to_body_m[1][0]; } inline double get_T_local_to_body_22() const { return t_local_to_body_m[1][1]; } inline double get_T_local_to_body_23() const { return t_local_to_body_m[1][2]; } inline double get_T_local_to_body_31() const { return t_local_to_body_m[2][0]; } inline double get_T_local_to_body_32() const { return t_local_to_body_m[2][1]; } inline double get_T_local_to_body_33() const { return t_local_to_body_m[2][2]; } // inline double get_Gravity() const { return gravity; } // inline void set_Gravity(double g) { gravity = g; } // inline double get_Centrifugal_relief() const { // return centrifugal_relief; // } // inline void set_Centrifugal_relief(double cr) { // centrifugal_relief = cr; // } inline double get_Alpha() const { return alpha; } inline double get_Alpha_deg() const { return alpha * SGD_RADIANS_TO_DEGREES; } inline double get_Beta() const { return beta; } inline double get_Beta_deg() const { return beta * SGD_RADIANS_TO_DEGREES; } inline double get_Alpha_dot() const { return alpha_dot; } // inline void set_Alpha_dot( double ad ) { alpha_dot = ad; } inline double get_Beta_dot() const { return beta_dot; } // inline void set_Beta_dot( double bd ) { beta_dot = bd; } // inline double get_Cos_alpha() const { return cos_alpha; } // inline void set_Cos_alpha( double ca ) { cos_alpha = ca; } // inline double get_Sin_alpha() const { return sin_alpha; } // inline void set_Sin_alpha( double sa ) { sin_alpha = sa; } // inline double get_Cos_beta() const { return cos_beta; } // inline void set_Cos_beta( double cb ) { cos_beta = cb; } // inline double get_Sin_beta() const { return sin_beta; } // inline void set_Sin_beta( double sb ) { sin_beta = sb; } inline double get_Cos_phi() const { return cos_phi; } // inline double get_Sin_phi() const { return sin_phi; } // inline void set_Sin_phi( double sp ) { sin_phi = sp; } inline double get_Cos_theta() const { return cos_theta; } // inline double get_Sin_theta() const { return sin_theta; } // inline void set_Sin_theta( double st ) { sin_theta = st; } // inline double get_Cos_psi() const { return cos_psi; } // inline void set_Cos_psi( double cp ) { cos_psi = cp; } // inline double get_Sin_psi() const { return sin_psi; } // inline void set_Sin_psi( double sp ) { sin_psi = sp; } inline double get_Gamma_vert_rad() const { return gamma_vert_rad; } // inline double get_Gamma_horiz_rad() const { return gamma_horiz_rad; } // inline void set_Gamma_horiz_rad( double gh ) { gamma_horiz_rad = gh; } // inline double get_Sigma() const { return sigma; } // inline void set_Sigma( double s ) { sigma = s; } inline double get_Density() const { return density; } // inline double get_V_sound() const { return v_sound; } // inline void set_V_sound( double v ) { v_sound = v; } inline double get_Mach_number() const { return mach_number; } inline double get_Static_pressure() const { return static_pressure; } inline double get_Total_pressure() const { return total_pressure; } // inline void set_Total_pressure( double tp ) { total_pressure = tp; } // inline double get_Impact_pressure() const { return impact_pressure; } // inline void set_Impact_pressure( double ip ) { impact_pressure = ip; } inline double get_Dynamic_pressure() const { return dynamic_pressure; } // inline void set_Dynamic_pressure( double dp ) { dynamic_pressure = dp; } inline double get_Static_temperature() const { return static_temperature; } inline double get_Total_temperature() const { return total_temperature; } // inline void set_Total_temperature( double t ) { total_temperature = t; } inline double get_Sea_level_radius() const { return sea_level_radius; } inline double get_Earth_position_angle() const { return earth_position_angle; } inline double get_Runway_altitude() const { return runway_altitude; } inline double get_Runway_altitude_m() const { return SG_FEET_TO_METER * runway_altitude; } // inline double get_Runway_latitude() const { return runway_latitude; } // inline void set_Runway_latitude( double lat ) { runway_latitude = lat; } // inline double get_Runway_longitude() const { return runway_longitude; } // inline void set_Runway_longitude( double lon ) { // runway_longitude = lon; // } // inline double get_Runway_heading() const { return runway_heading; } // inline void set_Runway_heading( double h ) { runway_heading = h; } // inline double get_Radius_to_rwy() const { return radius_to_rwy; } // inline void set_Radius_to_rwy( double r ) { radius_to_rwy = r; } // inline double * get_D_cg_rwy_local_v() { return d_cg_rwy_local_v; } // inline double get_D_cg_north_of_rwy() const { // return d_cg_rwy_local_v[0]; // } // inline double get_D_cg_east_of_rwy() const { // return d_cg_rwy_local_v[1]; // } // inline double get_D_cg_above_rwy() const { return d_cg_rwy_local_v[2]; } /* inline void set_CG_Rwy_Local( double north, double east, double above ) { d_cg_rwy_local_v[0] = north; d_cg_rwy_local_v[1] = east; d_cg_rwy_local_v[2] = above; } */ // inline double * get_D_cg_rwy_rwy_v() { return d_cg_rwy_rwy_v; } // inline double get_X_cg_rwy() const { return d_cg_rwy_rwy_v[0]; } // inline double get_Y_cg_rwy() const { return d_cg_rwy_rwy_v[1]; } // inline double get_H_cg_rwy() const { return d_cg_rwy_rwy_v[2]; } /* inline void set_CG_Rwy_Rwy( double x, double y, double h ) { d_cg_rwy_rwy_v[0] = x; d_cg_rwy_rwy_v[1] = y; d_cg_rwy_rwy_v[2] = h; } */ // inline double * get_D_pilot_rwy_local_v() { return d_pilot_rwy_local_v; } // inline double get_D_pilot_north_of_rwy() const { // return d_pilot_rwy_local_v[0]; // } // inline double get_D_pilot_east_of_rwy() const { // return d_pilot_rwy_local_v[1]; // } // inline double get_D_pilot_above_rwy() const { // return d_pilot_rwy_local_v[2]; // } /* inline void set_Pilot_Rwy_Local( double north, double east, double above ) { d_pilot_rwy_local_v[0] = north; d_pilot_rwy_local_v[1] = east; d_pilot_rwy_local_v[2] = above; } */ // inline double * get_D_pilot_rwy_rwy_v() { return d_pilot_rwy_rwy_v; } // inline double get_X_pilot_rwy() const { return d_pilot_rwy_rwy_v[0]; } // inline double get_Y_pilot_rwy() const { return d_pilot_rwy_rwy_v[1]; } // inline double get_H_pilot_rwy() const { return d_pilot_rwy_rwy_v[2]; } /* inline void set_Pilot_Rwy_Rwy( double x, double y, double h ) { d_pilot_rwy_rwy_v[0] = x; d_pilot_rwy_rwy_v[1] = y; d_pilot_rwy_rwy_v[2] = h; } */ inline double get_Climb_Rate() const { return climb_rate; } // inline SGTimeStamp get_time_stamp() const { return valid_stamp; } // inline void stamp_time() { valid_stamp = next_stamp; next_stamp.stamp(); } // Extrapolate FDM based on time_offset (in usec) void extrapolate( int time_offset ); // sin/cos lat_geocentric inline double get_sin_lat_geocentric(void) const { return sin_lat_geocentric; } inline double get_cos_lat_geocentric(void) const { return cos_lat_geocentric; } inline double get_sin_longitude(void) const { return sin_longitude; } inline double get_cos_longitude(void) const { return cos_longitude; } inline double get_sin_latitude(void) const { return sin_latitude; } inline double get_cos_latitude(void) const { return cos_latitude; } // Auxilliary variables inline double get_daux( int n ) const { return daux[n]; } inline float get_faux( int n ) const { return faux[n]; } inline int get_iaux( int n ) const { return iaux[n]; } // Note that currently this is the "same" value runway altitude... inline double get_ground_elev_ft() const { return runway_altitude; } ////////////////////////////////////////////////////////////////////////// // Ground handling routines ////////////////////////////////////////////////////////////////////////// enum GroundType { Unknown = 0, //?? Solid, // Whatever we will roll on with infinite load factor. Forest, // Ground unsuitable for taxiing. Water, // For the beaver ... Catapult, // Carrier cats. Wire // Carrier wires. }; // Prepare the ground cache for the wgs84 position pt_*. // That is take all vertices in the ball with radius rad around the // position given by the pt_* and store them in a local scene graph. bool prepare_ground_cache_m(double ref_time, const double pt[3], double rad); bool prepare_ground_cache_ft(double ref_time, const double pt[3], double rad); // Returns true if the cache is valid. // Also the reference time, point and radius values where the cache // is valid for are returned. bool is_valid_m(double *ref_time, double pt[3], double *rad); bool is_valid_ft(double *ref_time, double pt[3], double *rad); // Return the nearest catapult to the given point // pt in wgs84 coordinates. double get_cat_m(double t, const double pt[3], double end[2][3], double vel[2][3]); double get_cat_ft(double t, const double pt[3], double end[2][3], double vel[2][3]); // Return the altitude above ground below the wgs84 point pt // Search for the nearest triangle to pt. // Return ground properties like the ground type, the maximum load // this kind kind of ground can carry, the friction factor between // 0 and 1 which can be used to model lower friction with wet runways // and finally the altitude above ground. bool get_agl_m(double t, const double pt[3], double contact[3], double normal[3], double vel[3], int *type, double *loadCapacity, double *frictionFactor, double *agl); bool get_agl_ft(double t, const double pt[3], double contact[3], double normal[3], double vel[3], int *type, double *loadCapacity, double *frictionFactor, double *agl); bool get_agl_m(double t, const double pt[3], double max_altoff, double contact[3], double normal[3], double vel[3], int *type, double *loadCapacity, double *frictionFactor, double *agl); bool get_agl_ft(double t, const double pt[3], double max_altoff, double contact[3], double normal[3], double vel[3], int *type, double *loadCapacity, double *frictionFactor, double *agl); double get_groundlevel_m(double lat, double lon, double alt); // Return 1 if the hook intersects with a wire. // That test is done by checking if the quad spanned by the points pt* // intersects with the line representing the wire. // If the wire is caught, the cache will trace this wires endpoints until // the FDM calls release_wire(). bool caught_wire_m(double t, const double pt[4][3]); bool caught_wire_ft(double t, const double pt[4][3]); // Return the location and speed of the wire endpoints. bool get_wire_ends_m(double t, double end[2][3], double vel[2][3]); bool get_wire_ends_ft(double t, double end[2][3], double vel[2][3]); // Tell the cache code that it does no longer need to care for // the wire end position. void release_wire(void); }; extern FGInterface * cur_fdm_state; // Toggle data logging on/off void fgToggleFDMdataLogging(void); #endif // _FLIGHT_HXX