// array.cxx -- Array management class // // Written by Curtis Olson, started March 1998. // // Copyright (C) 1998 - 1999 Curtis L. Olson - curt@flightgear.org // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. // // $Id$ // (Log is kept at end of this file) #ifdef HAVE_CONFIG_H # include #endif #include // #include // isspace() // #include // atoi() // #include // rint() // #include // #include // #ifdef HAVE_SYS_STAT_H // # include // stat() // #endif // #ifdef FG_HAVE_STD_INCLUDES // # include // #else // # include // #endif // #ifdef HAVE_UNISTD_H // # include // stat() // #endif #include STL_STRING #include #include #include #include #include "array.hxx" FG_USING_STD(string); FGArray::FGArray( void ) { // cout << "class FGArray CONstructor called." << endl; in_data = new float[ARRAY_SIZE_1][ARRAY_SIZE_1]; // out_data = new float[ARRAY_SIZE_1][ARRAY_SIZE_1]; } FGArray::FGArray( const string &file ) { // cout << "class FGArray CONstructor called." << endl; in_data = new float[ARRAY_SIZE_1][ARRAY_SIZE_1]; // out_data = new float[ARRAY_SIZE_1][ARRAY_SIZE_1]; FGArray::open(file); } // open an Array file int FGArray::open( const string& file ) { // open input file (or read from stdin) if ( file == "-" ) { cout << " Opening array data pipe from stdin" << endl; // fd = stdin; // fd = gzdopen(STDIN_FILENO, "r"); cout << " Not yet ported ..." << endl; return 0; } else { in = new fg_gzifstream( file ); if ( !(*in) ) { cout << " Cannot open " << file << endl; return 0; } cout << " Opening array data file: " << file << endl; } return 1; } // close an Array file int FGArray::close() { // the fg_gzifstream doesn't seem to have a close() delete in; return 1; } // parse Array file int FGArray::parse() { *in >> originx >> originy; *in >> cols >> col_step; *in >> rows >> row_step; cout << " origin = " << originx << " " << originy << endl; cout << " cols = " << cols << " rows = " << rows << endl; cout << " col_step = " << col_step << " row_step = " << row_step <> in_data[i][j]; } } cout << " Done parsing\n"; return 1; } // add a node to the output (fitted) node list void FGArray::add_fit_node( int i, int j, double val ) { double x = (originx + i * col_step) / 3600.0; double y = (originy + j * row_step) / 3600.0; cout << Point3D(x, y, val) << endl; node_list.push_back( Point3D(x, y, val) ); } #if 0 // Initialize output mesh structure void FGArray::outputmesh_init( void ) { int i, j; for ( j = 0; j < ARRAY_SIZE_1; j++ ) { for ( i = 0; i < ARRAY_SIZE_1; i++ ) { out_data[i][j] = -9999.0; } } } // Get the value of a mesh node double FGArray::outputmesh_get_pt( int i, int j ) { return ( out_data[i][j] ); } // Set the value of a mesh node void FGArray::outputmesh_set_pt( int i, int j, double value ) { // cout << "Setting data[" << i << "][" << j << "] = " << value << endl; out_data[i][j] = value; } #endif // Use least squares to fit a simpler data set to dem data void FGArray::fit( double error ) { double x[ARRAY_SIZE_1], y[ARRAY_SIZE_1]; double m, b, max_error, error_sq; double x1, y1; // double ave_error; double cury, lasty; int n, row, start, end; int colmin, colmax, rowmin, rowmax; bool good_fit; // FILE *dem, *fit, *fit1; error_sq = error * error; cout << " Initializing output mesh structure" << endl; // outputmesh_init(); // determine dimensions colmin = 0; colmax = cols; rowmin = 0; rowmax = rows; cout << " Fitting region = " << colmin << "," << rowmin << " to " << colmax << "," << rowmax << endl;; // include the corners explicitly add_fit_node( colmin, rowmin, in_data[colmin][rowmin] ); add_fit_node( colmin, rowmax-1, in_data[colmin][rowmax] ); add_fit_node( colmax-1, rowmin, in_data[colmax][rowmin] ); add_fit_node( colmax-1, rowmax-1, in_data[colmax][rowmax] ); cout << " Beginning best fit procedure" << endl; lasty = 0; for ( row = rowmin; row < rowmax; row++ ) { // fit = fopen("fit.dat", "w"); // fit1 = fopen("fit1.dat", "w"); start = colmin; // cout << " fitting row = " << row << endl; while ( start < colmax - 1 ) { end = start + 1; good_fit = true; x[0] = start * col_step; y[0] = in_data[start][row]; x[1] = end * col_step; y[1] = in_data[end][row]; n = 2; // cout << "Least square of first 2 points" << endl; least_squares(x, y, n, &m, &b); end++; while ( (end < colmax) && good_fit ) { ++n; // cout << "Least square of first " << n << " points" << endl; x[n-1] = x1 = end * col_step; y[n-1] = y1 = in_data[end][row]; least_squares_update(x1, y1, &m, &b); // ave_error = least_squares_error(x, y, n, m, b); max_error = least_squares_max_error(x, y, n, m, b); /* printf("%d - %d ave error = %.2f max error = %.2f y = %.2f*x + %.2f\n", start, end, ave_error, max_error, m, b); f = fopen("gnuplot.dat", "w"); for ( j = 0; j <= end; j++) { fprintf(f, "%.2f %.2f\n", 0.0 + ( j * col_step ), in_data[row][j]); } for ( j = start; j <= end; j++) { fprintf(f, "%.2f %.2f\n", 0.0 + ( j * col_step ), in_data[row][j]); } fclose(f); printf("Please hit return: "); gets(junk); */ if ( max_error > error_sq ) { good_fit = false; } end++; } if ( !good_fit ) { // error exceeded the threshold, back up end -= 2; // back "end" up to the last good enough fit n--; // back "n" up appropriately too } else { // we popped out of the above loop while still within // the error threshold, so we must be at the end of // the data set end--; } least_squares(x, y, n, &m, &b); // ave_error = least_squares_error(x, y, n, m, b); max_error = least_squares_max_error(x, y, n, m, b); /* printf("\n"); printf("%d - %d ave error = %.2f max error = %.2f y = %.2f*x + %.2f\n", start, end, ave_error, max_error, m, b); printf("\n"); fprintf(fit1, "%.2f %.2f\n", x[0], m * x[0] + b); fprintf(fit1, "%.2f %.2f\n", x[end-start], m * x[end-start] + b); */ if ( start > colmin ) { // skip this for the first line segment cury = m * x[0] + b; add_fit_node( start, row, (lasty + cury) / 2 ); // fprintf(fit, "%.2f %.2f\n", x[0], (lasty + cury) / 2); } lasty = m * x[end-start] + b; start = end; } /* fclose(fit); fclose(fit1); dem = fopen("gnuplot.dat", "w"); for ( j = 0; j < ARRAY_SIZE_1; j++) { fprintf(dem, "%.2f %.2f\n", 0.0 + ( j * col_step ), in_data[j][row]); } fclose(dem); */ // NOTICE, this is for testing only. This instance of // output_nodes should be removed. It should be called only // once at the end once all the nodes have been generated. // newmesh_output_nodes(&nm, "mesh.node"); // printf("Please hit return: "); gets(junk); } // outputmesh_output_nodes(fg_root, p); } // return the current altitude based on grid data. We should rewrite // this to interpolate exact values, but for now this is good enough double FGArray::interpolate_altitude( double lon, double lat ) { // we expect incoming (lon,lat) to be in arcsec for now double xlocal, ylocal, dx, dy, zA, zB, elev; int x1, x2, x3, y1, y2, y3; float z1, z2, z3; int xindex, yindex; /* determine if we are in the lower triangle or the upper triangle ______ | /| | / | | / | |/ | ------ then calculate our end points */ xlocal = (lon - originx) / col_step; ylocal = (lat - originy) / row_step; xindex = (int)(xlocal); yindex = (int)(ylocal); // printf("xindex = %d yindex = %d\n", xindex, yindex); if ( xindex + 1 == cols ) { xindex--; } if ( yindex + 1 == rows ) { yindex--; } if ( (xindex < 0) || (xindex + 1 >= cols) || (yindex < 0) || (yindex + 1 >= rows) ) { cout << "WARNING: Attempt to interpolate value outside of array!!!" << endl; return(-9999); } dx = xlocal - xindex; dy = ylocal - yindex; if ( dx > dy ) { // lower triangle // printf(" Lower triangle\n"); x1 = xindex; y1 = yindex; z1 = in_data[x1][y1]; x2 = xindex + 1; y2 = yindex; z2 = in_data[x2][y2]; x3 = xindex + 1; y3 = yindex + 1; z3 = in_data[x3][y3]; // printf(" dx = %.2f dy = %.2f\n", dx, dy); // printf(" (x1,y1,z1) = (%d,%d,%d)\n", x1, y1, z1); // printf(" (x2,y2,z2) = (%d,%d,%d)\n", x2, y2, z2); // printf(" (x3,y3,z3) = (%d,%d,%d)\n", x3, y3, z3); zA = dx * (z2 - z1) + z1; zB = dx * (z3 - z1) + z1; // printf(" zA = %.2f zB = %.2f\n", zA, zB); if ( dx > FG_EPSILON ) { elev = dy * (zB - zA) / dx + zA; } else { elev = zA; } } else { // upper triangle // printf(" Upper triangle\n"); x1 = xindex; y1 = yindex; z1 = in_data[x1][y1]; x2 = xindex; y2 = yindex + 1; z2 = in_data[x2][y2]; x3 = xindex + 1; y3 = yindex + 1; z3 = in_data[x3][y3]; // printf(" dx = %.2f dy = %.2f\n", dx, dy); // printf(" (x1,y1,z1) = (%d,%d,%d)\n", x1, y1, z1); // printf(" (x2,y2,z2) = (%d,%d,%d)\n", x2, y2, z2); // printf(" (x3,y3,z3) = (%d,%d,%d)\n", x3, y3, z3); zA = dy * (z2 - z1) + z1; zB = dy * (z3 - z1) + z1; // printf(" zA = %.2f zB = %.2f\n", zA, zB ); // printf(" xB - xA = %.2f\n", col_step * dy / row_step); if ( dy > FG_EPSILON ) { elev = dx * (zB - zA) / dy + zA; } else { elev = zA; } } return(elev); } #if 0 // Write out a node file that can be used by the "triangle" program. // Check for an optional "index.node.ex" file in case there is a .poly // file to go along with this node file. Include these nodes first // since they are referenced by position from the .poly file. void FGArray::outputmesh_output_nodes( const string& fg_root, FGBucket& p ) { double exnodes[MAX_EX_NODES][3]; struct stat stat_buf; string dir, file; char exfile[256]; #ifdef WIN32 char tmp_path[256]; #endif string command; FILE *fd; int colmin, colmax, rowmin, rowmax; int i, j, count, excount, result; // determine dimensions colmin = p.get_x() * ( (cols - 1) / 8); colmax = colmin + ( (cols - 1) / 8); rowmin = p.get_y() * ( (rows - 1) / 8); rowmax = rowmin + ( (rows - 1) / 8); cout << " dumping region = " << colmin << "," << rowmin << " to " << colmax << "," << rowmax << "\n"; // generate the base directory string base_path = p.gen_base_path(); cout << " fg_root = " << fg_root << " Base Path = " << base_path << endl; dir = fg_root + "/Scenery/" + base_path; cout << " Dir = " << dir << endl; // stat() directory and create if needed errno = 0; result = stat(dir.c_str(), &stat_buf); if ( result != 0 && errno == ENOENT ) { cout << " Creating directory\n"; command = "mkdir -p " + dir + "\n"; system( command.c_str() ); } else { // assume directory exists } // get index and generate output file name file = dir + "/" + p.gen_index_str() + ".node"; // get (optional) extra node file name (in case there is matching // .poly file. exfile = file + ".ex"; // load extra nodes if they exist excount = 0; if ( (fd = fopen(exfile, "r")) != NULL ) { int junki; fscanf(fd, "%d %d %d %d", &excount, &junki, &junki, &junki); if ( excount > MAX_EX_NODES - 1 ) { printf("Error, too many 'extra' nodes, increase array size\n"); exit(-1); } else { printf(" Expecting %d 'extra' nodes\n", excount); } for ( i = 1; i <= excount; i++ ) { fscanf(fd, "%d %lf %lf %lf\n", &junki, &exnodes[i][0], &exnodes[i][1], &exnodes[i][2]); printf("(extra) %d %.2f %.2f %.2f\n", i, exnodes[i][0], exnodes[i][1], exnodes[i][2]); } fclose(fd); } printf("Creating node file: %s\n", file); fd = fopen(file, "w"); // first count regular nodes to generate header count = 0; for ( j = rowmin; j <= rowmax; j++ ) { for ( i = colmin; i <= colmax; i++ ) { if ( out_data[i][j] > -9000.0 ) { count++; } } // printf(" count = %d\n", count); } fprintf(fd, "%d 2 1 0\n", count + excount); // now write out extra node data for ( i = 1; i <= excount; i++ ) { fprintf(fd, "%d %.2f %.2f %.2f\n", i, exnodes[i][0], exnodes[i][1], exnodes[i][2]); } // write out actual node data count = excount + 1; for ( j = rowmin; j <= rowmax; j++ ) { for ( i = colmin; i <= colmax; i++ ) { if ( out_data[i][j] > -9000.0 ) { fprintf(fd, "%d %.2f %.2f %.2f\n", count++, originx + (double)i * col_step, originy + (double)j * row_step, out_data[i][j]); } } // printf(" count = %d\n", count); } fclose(fd); } #endif FGArray::~FGArray( void ) { // printf("class FGArray DEstructor called.\n"); delete [] in_data; // delete [] out_data; } // $Log$ // Revision 1.5 1999/03/25 19:03:50 curt // Minor tweaks related to FGBucket usage. // // Revision 1.4 1999/03/20 20:32:51 curt // First mostly successful tile triangulation works. There's plenty of tweaking // to do, but we are marching in the right direction. // // Revision 1.3 1999/03/17 23:48:17 curt // Removed forced -g compile flag. // Fixed a couple compiler warnings. // // Revision 1.2 1999/03/13 23:50:26 curt // Tweaked output formatting a bit. // // Revision 1.1 1999/03/13 18:45:02 curt // Initial revision. (derived from libDEM.a code.) //