// digitalfilter.cxx - a selection of digital filters // // Written by Torsten Dreyer // Based heavily on work created by Curtis Olson, started January 2004. // // Copyright (C) 2004 Curtis L. Olson - http://www.flightgear.org/~curt // Copyright (C) 2010 Torsten Dreyer - Torsten (at) t3r (dot) de // // Washout/high-pass filter, lead-lag filter and integrator added. // low-pass and lag aliases added to Exponential filter, // rate-limit added. A J Teeder 2013 // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. // #include "digitalfilter.hxx" #include namespace FGXMLAutopilot { /** * * */ class DigitalFilterImplementation: public SGReferenced { public: virtual ~DigitalFilterImplementation() {} DigitalFilterImplementation(); virtual void initialize( double initvalue ) {} virtual double compute( double dt, double input ) = 0; virtual bool configure( SGPropertyNode& cfg_node, const std::string& cfg_name, SGPropertyNode& prop_root ) = 0; void setDigitalFilter( DigitalFilter * digitalFilter ) { _digitalFilter = digitalFilter; } protected: DigitalFilter * _digitalFilter; }; /* --------------------------------------------------------------------------------- */ /* --------------------------------------------------------------------------------- */ class GainFilterImplementation : public DigitalFilterImplementation { protected: InputValueList _gainInput; bool configure( SGPropertyNode& cfg_node, const std::string& cfg_name, SGPropertyNode& prop_root ); public: GainFilterImplementation() : _gainInput(1.0) {} double compute( double dt, double input ); }; class ReciprocalFilterImplementation : public GainFilterImplementation { public: double compute( double dt, double input ); }; class DerivativeFilterImplementation : public GainFilterImplementation { InputValueList _TfInput; double _input_1; bool configure( SGPropertyNode& cfg_node, const std::string& cfg_name, SGPropertyNode& prop_root ); public: DerivativeFilterImplementation(); double compute( double dt, double input ); virtual void initialize( double initvalue ); }; class ExponentialFilterImplementation : public GainFilterImplementation { protected: InputValueList _TfInput; bool configure( SGPropertyNode& cfg_node, const std::string& cfg_name, SGPropertyNode& prop_root ); bool _isSecondOrder; double _output_1, _output_2; public: ExponentialFilterImplementation(); double compute( double dt, double input ); virtual void initialize( double initvalue ); }; class MovingAverageFilterImplementation : public DigitalFilterImplementation { protected: InputValueList _samplesInput; double _output_1; std::deque _inputQueue; bool configure( SGPropertyNode& cfg_node, const std::string& cfg_name, SGPropertyNode& prop_root ); public: MovingAverageFilterImplementation(); double compute( double dt, double input ); virtual void initialize( double initvalue ); }; class NoiseSpikeFilterImplementation : public DigitalFilterImplementation { protected: double _output_1; InputValueList _rateOfChangeInput; bool configure( SGPropertyNode& cfg_node, const std::string& cfg_name, SGPropertyNode& prop_root ); public: NoiseSpikeFilterImplementation(); double compute( double dt, double input ); virtual void initialize( double initvalue ); }; class RateLimitFilterImplementation : public DigitalFilterImplementation { protected: double _output_1; InputValueList _rateOfChangeMax; InputValueList _rateOfChangeMin ; bool configure( SGPropertyNode& cfg_node, const std::string& cfg_name, SGPropertyNode& prop_root ); public: RateLimitFilterImplementation(); double compute( double dt, double input ); virtual void initialize( double initvalue ); }; class IntegratorFilterImplementation : public GainFilterImplementation { protected: InputValueList _TfInput; InputValueList _minInput; InputValueList _maxInput; double _input_1; double _output_1; bool configure( SGPropertyNode& cfg_node, const std::string& cfg_name, SGPropertyNode& prop_root ); public: IntegratorFilterImplementation(); double compute( double dt, double input ); virtual void initialize( double initvalue ); }; class HighPassFilterImplementation : public GainFilterImplementation { protected: InputValueList _TfInput; double _input_1; double _output_1; bool configure( SGPropertyNode& cfg_node, const std::string& cfg_name, SGPropertyNode& prop_root ); public: HighPassFilterImplementation(); double compute( double dt, double input ); virtual void initialize( double initvalue ); }; class LeadLagFilterImplementation : public GainFilterImplementation { protected: InputValueList _TfaInput; InputValueList _TfbInput; double _input_1; double _output_1; bool configure( SGPropertyNode& cfg_node, const std::string& cfg_name, SGPropertyNode& prop_root ); public: LeadLagFilterImplementation(); double compute( double dt, double input ); virtual void initialize( double initvalue ); }; /* --------------------------------------------------------------------------------- */ /* --------------------------------------------------------------------------------- */ } // namespace FGXMLAutopilot using namespace FGXMLAutopilot; //------------------------------------------------------------------------------ DigitalFilterImplementation::DigitalFilterImplementation() : _digitalFilter(NULL) { } //------------------------------------------------------------------------------ double GainFilterImplementation::compute( double dt, double input ) { return _gainInput.get_value() * input; } bool GainFilterImplementation::configure( SGPropertyNode& cfg_node, const std::string& cfg_name, SGPropertyNode& prop_root ) { if (cfg_name == "gain" ) { _gainInput.push_back( new InputValue(prop_root, cfg_node, 1) ); return true; } return false; } /* --------------------------------------------------------------------------------- */ /* --------------------------------------------------------------------------------- */ double ReciprocalFilterImplementation::compute( double dt, double input ) { if( input >= -SGLimitsd::min() && input <= SGLimitsd::min() ) return SGLimitsd::max(); return _gainInput.get_value() / input; } /* --------------------------------------------------------------------------------- */ /* --------------------------------------------------------------------------------- */ DerivativeFilterImplementation::DerivativeFilterImplementation() : _input_1(0.0) { } void DerivativeFilterImplementation::initialize( double initvalue ) { _input_1 = initvalue; } //------------------------------------------------------------------------------ bool DerivativeFilterImplementation::configure( SGPropertyNode& cfg_node, const std::string& cfg_name, SGPropertyNode& prop_root ) { if( GainFilterImplementation::configure(cfg_node, cfg_name, prop_root) ) return true; if (cfg_name == "filter-time" ) { _TfInput.push_back( new InputValue(prop_root, cfg_node, 1) ); return true; } return false; } double DerivativeFilterImplementation::compute( double dt, double input ) { double output = (input - _input_1) * _TfInput.get_value() * _gainInput.get_value() / dt; _input_1 = input; return output; } /* --------------------------------------------------------------------------------- */ /* --------------------------------------------------------------------------------- */ MovingAverageFilterImplementation::MovingAverageFilterImplementation() : _output_1(0.0) { } void MovingAverageFilterImplementation::initialize( double initvalue ) { _output_1 = initvalue; } double MovingAverageFilterImplementation::compute( double dt, double input ) { typedef std::deque::size_type size_type; size_type samples = _samplesInput.get_value(); if (_inputQueue.size() != samples) { // For constant size filters, this code executed once. bool shrunk = _inputQueue.size() > samples; _inputQueue.resize(samples, _output_1); if (shrunk) { _output_1 = 0.0; for (size_type ii = 0; ii < samples; ii++) _output_1 += _inputQueue[ii]; _output_1 /= samples; } } double output_0 = _output_1 + (input - _inputQueue.back()) / samples; _output_1 = output_0; _inputQueue.pop_back(); _inputQueue.push_front(input); return output_0; } bool MovingAverageFilterImplementation::configure( SGPropertyNode& cfg_node, const std::string& cfg_name, SGPropertyNode& prop_root ) { if (cfg_name == "samples" ) { _samplesInput.push_back( new InputValue(prop_root, cfg_node, 1) ); return true; } return false; } /* --------------------------------------------------------------------------------- */ /* --------------------------------------------------------------------------------- */ NoiseSpikeFilterImplementation::NoiseSpikeFilterImplementation() : _output_1(0.0) { } void NoiseSpikeFilterImplementation::initialize( double initvalue ) { _output_1 = initvalue; } double NoiseSpikeFilterImplementation::compute( double dt, double input ) { double delta = input - _output_1; if( fabs(delta) <= SGLimitsd::min() ) return input; // trivial double maxChange = _rateOfChangeInput.get_value() * dt; const PeriodicalValue * periodical = _digitalFilter->getPeriodicalValue(); if( periodical ) delta = periodical->normalizeSymmetric( delta ); if( fabs(delta) <= maxChange ) return (_output_1 = input); else return (_output_1 = _output_1 + copysign( maxChange, delta )); } //------------------------------------------------------------------------------ bool NoiseSpikeFilterImplementation::configure( SGPropertyNode& cfg_node, const std::string& cfg_name, SGPropertyNode& prop_root ) { if (cfg_name == "max-rate-of-change" ) { _rateOfChangeInput.push_back( new InputValue(prop_root, cfg_node, 1) ); return true; } return false; } /* --------------------------------------------------------------------------------- */ RateLimitFilterImplementation::RateLimitFilterImplementation() : _output_1(0.0) { } void RateLimitFilterImplementation::initialize( double initvalue ) { _output_1 = initvalue; } double RateLimitFilterImplementation::compute( double dt, double input ) { double delta = input - _output_1; double output; if( fabs(delta) <= SGLimitsd::min() ) return input; // trivial double maxChange = _rateOfChangeMax.get_value() * dt; double minChange = _rateOfChangeMin.get_value() * dt; // const PeriodicalValue * periodical = _digitalFilter->getPeriodicalValue(); // if( periodical ) delta = periodical->normalizeSymmetric( delta ); output = input; if(delta >= maxChange ) output = _output_1 + maxChange; if(delta <= minChange ) output = _output_1 + minChange; _output_1 = output; return (output); } bool RateLimitFilterImplementation::configure( SGPropertyNode& cfg_node, const std::string& cfg_name, SGPropertyNode& prop_root ) { std::cout << "RateLimitFilterImplementation " << cfg_name << std::endl; if (cfg_name == "max-rate-of-change" ) { _rateOfChangeMax.push_back( new InputValue(prop_root, cfg_node, 1) ); return true; } if (cfg_name == "min-rate-of-change" ) { _rateOfChangeMin.push_back( new InputValue(prop_root, cfg_node, 1) ); return true; } return false; } /* --------------------------------------------------------------------------------- */ /* --------------------------------------------------------------------------------- */ ExponentialFilterImplementation::ExponentialFilterImplementation() : _isSecondOrder(false), _output_1(0.0), _output_2(0.0) { } void ExponentialFilterImplementation::initialize( double initvalue ) { _output_1 = _output_2 = initvalue; } double ExponentialFilterImplementation::compute( double dt, double input ) { input = GainFilterImplementation::compute( dt, input ); double tf = _TfInput.get_value(); double output_0; // avoid negative filter times // and div by zero if -tf == dt double alpha = tf > 0.0 ? 1 / ((tf/dt) + 1) : 1.0; if(_isSecondOrder) { output_0 = alpha * alpha * input + 2 * (1 - alpha) * _output_1 - (1 - alpha) * (1 - alpha) * _output_2; } else { output_0 = alpha * input + (1 - alpha) * _output_1; } _output_2 = _output_1; return (_output_1 = output_0); } //------------------------------------------------------------------------------ bool ExponentialFilterImplementation::configure( SGPropertyNode& cfg_node, const std::string& cfg_name, SGPropertyNode& prop_root ) { if( GainFilterImplementation::configure(cfg_node, cfg_name, prop_root) ) return true; if (cfg_name == "filter-time" ) { _TfInput.push_back( new InputValue(prop_root, cfg_node, 1) ); return true; } if (cfg_name == "type" ) { std::string type(cfg_node.getStringValue()); _isSecondOrder = type == "double-exponential"; } return false; } /* --------------------------------------------------------------------------------- */ IntegratorFilterImplementation::IntegratorFilterImplementation() : _input_1(0.0), _output_1(0.0) { } void IntegratorFilterImplementation::initialize( double initvalue ) { _input_1 = _output_1 = initvalue; } //------------------------------------------------------------------------------ bool IntegratorFilterImplementation::configure( SGPropertyNode& cfg_node, const std::string& cfg_name, SGPropertyNode& prop_root ) { if( GainFilterImplementation::configure(cfg_node, cfg_name, prop_root) ) return true; if (cfg_name == "u_min" ) { _minInput.push_back( new InputValue(prop_root, cfg_node, 1) ); return true; } if (cfg_name == "u_max" ) { _maxInput.push_back( new InputValue(prop_root, cfg_node, 1) ); return true; } return false; } double IntegratorFilterImplementation::compute( double dt, double input ) { double output = _output_1 + input * _gainInput.get_value() * dt; double u_min = _minInput.get_value(); double u_max = _maxInput.get_value(); if (output >= u_max) output = u_max; // clamping inside "::compute" prevents integrator wind-up if (output <= u_min) output = u_min; _input_1 = input; _output_1 = output; return output; } /* --------------------------------------------------------------------------------- */ HighPassFilterImplementation::HighPassFilterImplementation() : _input_1(0.0), _output_1(0.0) { } void HighPassFilterImplementation::initialize( double initvalue ) { _input_1 = initvalue; _output_1 = initvalue; } double HighPassFilterImplementation::compute( double dt, double input ) { input = GainFilterImplementation::compute( dt, input ); double tf = _TfInput.get_value(); double output; // avoid negative filter times // and div by zero if -tf == dt double alpha = tf > 0.0 ? 1 / ((tf/dt) + 1) : 1.0; output = (1 - alpha) * (input - _input_1 + _output_1); _input_1 = input; _output_1 = output; return output; } //------------------------------------------------------------------------------ bool HighPassFilterImplementation::configure( SGPropertyNode& cfg_node, const std::string& cfg_name, SGPropertyNode& prop_root ) { if( GainFilterImplementation::configure(cfg_node, cfg_name, prop_root) ) return true; if (cfg_name == "filter-time" ) { _TfInput.push_back( new InputValue(prop_root, cfg_node, 1) ); return true; } return false; } /* --------------------------------------------------------------------------------- */ LeadLagFilterImplementation::LeadLagFilterImplementation() : _input_1(0.0), _output_1(0.0) { } void LeadLagFilterImplementation::initialize( double initvalue ) { _input_1 = initvalue; _output_1 = initvalue; } double LeadLagFilterImplementation::compute( double dt, double input ) { input = GainFilterImplementation::compute( dt, input ); double tfa = _TfaInput.get_value(); double tfb = _TfbInput.get_value(); double output; // avoid negative filter times // and div by zero if -tf == dt double alpha = tfa > 0.0 ? 1 / ((tfa/dt) + 1) : 1.0; double beta = tfb > 0.0 ? 1 / ((tfb/dt) + 1) : 1.0; output = (1 - beta) * (input / (1 - alpha) - _input_1 + _output_1); _input_1 = input; _output_1 = output; return output; } //------------------------------------------------------------------------------ bool LeadLagFilterImplementation::configure( SGPropertyNode& cfg_node, const std::string& cfg_name, SGPropertyNode& prop_root ) { if( GainFilterImplementation::configure(cfg_node, cfg_name, prop_root) ) return true; if (cfg_name == "filter-time-a" ) { _TfaInput.push_back( new InputValue(prop_root, cfg_node, 1) ); return true; } if (cfg_name == "filter-time-b" ) { _TfbInput.push_back( new InputValue(prop_root, cfg_node, 1) ); return true; } return false; } /* -------------------------------------------------------------------------- */ /* Digital Filter Component Implementation */ /* -------------------------------------------------------------------------- */ DigitalFilter::DigitalFilter() : AnalogComponent(), _initializeTo(INITIALIZE_INPUT) { } DigitalFilter::~DigitalFilter() { } //------------------------------------------------------------------------------ template DigitalFilterImplementation* digitalFilterFactory() { return new DigitalFilterType(); } typedef std::map DigitalFilterMap; static DigitalFilterMap componentForge; //------------------------------------------------------------------------------ bool DigitalFilter::configure( SGPropertyNode& prop_root, SGPropertyNode& cfg ) { if( componentForge.empty() ) { componentForge["gain" ] = digitalFilterFactory; componentForge["exponential" ] = digitalFilterFactory; componentForge["double-exponential" ] = digitalFilterFactory; componentForge["moving-average" ] = digitalFilterFactory; componentForge["noise-spike" ] = digitalFilterFactory; componentForge["rate-limit" ] = digitalFilterFactory; componentForge["reciprocal" ] = digitalFilterFactory; componentForge["derivative" ] = digitalFilterFactory; componentForge["high-pass" ] = digitalFilterFactory; componentForge["lead-lag" ] = digitalFilterFactory; componentForge["integrator" ] = digitalFilterFactory; } const std::string type = cfg.getStringValue("type"); DigitalFilterMap::iterator component_factory = componentForge.find(type); if( component_factory == componentForge.end() ) { SG_LOG(SG_AUTOPILOT, SG_WARN, "unhandled filter type '" << type << "'"); return false; } _implementation = (*component_factory->second)(); _implementation->setDigitalFilter( this ); for( int i = 0; i < cfg.nChildren(); ++i ) { SGPropertyNode_ptr child = cfg.getChild(i); std::string cname(child->getName()); if( !_implementation->configure(*child, cname, prop_root) && !configure(*child, cname, prop_root) && cname != "type" && cname != "params" ) // 'params' is usually used to specify parameters // in PropertList files. SG_LOG ( SG_AUTOPILOT, SG_WARN, "DigitalFilter: unknown config node: " << cname ); } return true; } //------------------------------------------------------------------------------ bool DigitalFilter::configure( SGPropertyNode& cfg_node, const std::string& cfg_name, SGPropertyNode& prop_root ) { if( cfg_name == "initialize-to" ) { std::string s( cfg_node.getStringValue() ); if( s == "input" ) _initializeTo = INITIALIZE_INPUT; else if( s == "output" ) _initializeTo = INITIALIZE_OUTPUT; else if( s == "none" ) _initializeTo = INITIALIZE_NONE; else SG_LOG ( SG_AUTOPILOT, SG_WARN, "DigitalFilter: initialize-to (" << s << ") ignored" ); return true; } return AnalogComponent::configure(cfg_node, cfg_name, prop_root); } //------------------------------------------------------------------------------ void DigitalFilter::update( bool firstTime, double dt) { if( _implementation == NULL ) return; if( firstTime ) { switch( _initializeTo ) { case INITIALIZE_INPUT: SG_LOG(SG_AUTOPILOT,SG_DEBUG, "First time initialization of " << get_name() << " to " << _valueInput.get_value() ); _implementation->initialize( _valueInput.get_value() ); break; case INITIALIZE_OUTPUT: SG_LOG(SG_AUTOPILOT,SG_DEBUG, "First time initialization of " << get_name() << " to " << get_output_value() ); _implementation->initialize( get_output_value() ); break; default: SG_LOG(SG_AUTOPILOT,SG_DEBUG, "First time initialization of " << get_name() << " to (uninitialized)" ); break; } } double input = _valueInput.get_value() - _referenceInput.get_value(); double output = _implementation->compute( dt, input ); set_output_value( output ); if(_debug) { std::cout << "input:" << input << "\toutput:" << output << std::endl; } }