// Copyright (C) 2008 Tim Moore // Copyright (C) 2011 Mathias Froehlich // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. #ifdef HAVE_CONFIG_H # include #endif #include "CameraGroup.hxx" #include
#include
#include "renderer.hxx" #include "FGEventHandler.hxx" #include "WindowBuilder.hxx" #include "WindowSystemAdapter.hxx" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace flightgear { const char* MAIN_CAMERA = "MAIN_CAMERA"; const char* FAR_CAMERA = "FAR_CAMERA"; const char* GEOMETRY_CAMERA = "GEOMETRY_CAMERA"; const char* SHADOW_CAMERA = "SHADOW_CAMERA"; const char* LIGHTING_CAMERA = "LIGHTING_CAMERA"; const char* DISPLAY_CAMERA = "DISPLAY_CAMERA"; } static osg::Matrix invert(const osg::Matrix& matrix) { return osg::Matrix::inverse(matrix); } /// Returns the zoom factor of the master camera. /// The reference fov is the historic 55 deg static double zoomFactor() { double fov = fgGetDouble("/sim/current-view/field-of-view", 55); if (fov < 1) fov = 1; return tan(55*0.5*SG_DEGREES_TO_RADIANS)/tan(fov*0.5*SG_DEGREES_TO_RADIANS); } static osg::Vec2d preMult(const osg::Vec2d& v, const osg::Matrix& m) { osg::Vec3d tmp = m.preMult(osg::Vec3(v, 0)); return osg::Vec2d(tmp[0], tmp[1]); } static osg::Matrix relativeProjection(const osg::Matrix& P0, const osg::Matrix& R, const osg::Vec2d ref[2], const osg::Matrix& pP, const osg::Matrix& pR, const osg::Vec2d pRef[2]) { // Track the way from one projection space to the other: // We want // P = T*S*P0 // where P0 is the projection template sensible for the given window size, // T is a translation matrix and S a scale matrix. // We need to determine T and S so that the reference points in the parents // projection space match the two reference points in this cameras projection space. // Starting from the parents camera projection space, we get into this cameras // projection space by the transform matrix: // P*R*inv(pP*pR) = T*S*P0*R*inv(pP*pR) // So, at first compute that matrix without T*S and determine S and T from that // Ok, now osg uses the inverse matrix multiplication order, thus: osg::Matrix PtoPwithoutTS = invert(pR*pP)*R*P0; // Compute the parents reference points in the current projection space // without the yet unknown T and S osg::Vec2d pRefInThis[2] = { preMult(pRef[0], PtoPwithoutTS), preMult(pRef[1], PtoPwithoutTS) }; // To get the same zoom, rescale to match the parents size double s = (ref[0] - ref[1]).length()/(pRefInThis[0] - pRefInThis[1]).length(); osg::Matrix S = osg::Matrix::scale(s, s, 1); // For the translation offset, incorporate the now known scale // and recompute the position ot the first reference point in the // currents projection space without the yet unknown T. pRefInThis[0] = preMult(pRef[0], PtoPwithoutTS*S); // The translation is then the difference of the reference points osg::Matrix T = osg::Matrix::translate(osg::Vec3d(ref[0] - pRefInThis[0], 0)); // Compose and return the desired final projection matrix return P0*S*T; } namespace flightgear { using namespace osg; using std::strcmp; using std::string; ref_ptr CameraGroup::_defaultGroup; CameraGroup::CameraGroup(osgViewer::Viewer* viewer) : _viewer(viewer) { } } namespace { using namespace osg; // Given a projection matrix, return a new one with the same frustum // sides and new near / far values. void makeNewProjMat(Matrixd& oldProj, double znear, double zfar, Matrixd& projection) { projection = oldProj; // Slightly inflate the near & far planes to avoid objects at the // extremes being clipped out. znear *= 0.999; zfar *= 1.001; // Clamp the projection matrix z values to the range (near, far) double epsilon = 1.0e-6; if (fabs(projection(0,3)) < epsilon && fabs(projection(1,3)) < epsilon && fabs(projection(2,3)) < epsilon) { // Projection is Orthographic epsilon = -1.0/(zfar - znear); // Used as a temp variable projection(2,2) = 2.0*epsilon; projection(3,2) = (zfar + znear)*epsilon; } else { // Projection is Perspective double trans_near = (-znear*projection(2,2) + projection(3,2)) / (-znear*projection(2,3) + projection(3,3)); double trans_far = (-zfar*projection(2,2) + projection(3,2)) / (-zfar*projection(2,3) + projection(3,3)); double ratio = fabs(2.0/(trans_near - trans_far)); double center = -0.5*(trans_near + trans_far); projection.postMult(osg::Matrixd(1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, ratio, 0.0, 0.0, 0.0, center*ratio, 1.0)); } } } namespace flightgear { void CameraInfo::updateCameras() { bufferSize->set( osg::Vec2f( width, height ) ); for (CameraMap::iterator ii = cameras.begin(); ii != cameras.end(); ++ii ) { float f = ii->second.scaleFactor; if ( f == 0.0f ) continue; ii->second.camera->getViewport()->setViewport(x*f, y*f, width*f, height*f); } for (RenderBufferMap::iterator ii = buffers.begin(); ii != buffers.end(); ++ii ) { float f = ii->second.scaleFactor; if ( f == 0.0f ) continue; osg::Texture2D* texture = ii->second.texture.get(); if ( texture->getTextureHeight() != height*f || texture->getTextureWidth() != width*f ) { texture->setTextureSize( width*f, height*f ); texture->dirtyTextureObject(); } } } void CameraInfo::resized(double w, double h) { bufferSize->set( osg::Vec2f( w, h ) ); for (RenderBufferMap::iterator ii = buffers.begin(); ii != buffers.end(); ++ii) { float s = ii->second.scaleFactor; if ( s == 0.0f ) continue; ii->second.texture->setTextureSize( w * s, h * s ); ii->second.texture->dirtyTextureObject(); } for (CameraMap::iterator ii = cameras.begin(); ii != cameras.end(); ++ii) { RenderStageInfo& rsi = ii->second; if (!rsi.resizable || rsi.camera->getRenderTargetImplementation() != osg::Camera::FRAME_BUFFER_OBJECT || rsi.scaleFactor == 0.0f ) continue; Viewport* vp = rsi.camera->getViewport(); vp->width() = w * rsi.scaleFactor; vp->height() = h * rsi.scaleFactor; osgViewer::Renderer* renderer = static_cast(rsi.camera->getRenderer()); for (int i = 0; i < 2; ++i) { osgUtil::SceneView* sceneView = renderer->getSceneView(i); sceneView->getRenderStage()->setFrameBufferObject(0); sceneView->getRenderStage()->setCameraRequiresSetUp(true); if (sceneView->getRenderStageLeft()) { sceneView->getRenderStageLeft()->setFrameBufferObject(0); sceneView->getRenderStageLeft()->setCameraRequiresSetUp(true); } if (sceneView->getRenderStageRight()) { sceneView->getRenderStageRight()->setFrameBufferObject(0); sceneView->getRenderStageRight()->setCameraRequiresSetUp(true); } } } } osg::Camera* CameraInfo::getCamera(const std::string& k) const { CameraMap::const_iterator ii = cameras.find( k ); if (ii == cameras.end()) return 0; return ii->second.camera.get(); } osg::Texture2D* CameraInfo::getBuffer(const std::string& k) const { RenderBufferMap::const_iterator ii = buffers.find(k); if (ii == buffers.end()) return 0; return ii->second.texture.get(); } int CameraInfo::getMainSlaveIndex() const { return cameras.find( MAIN_CAMERA )->second.slaveIndex; } void CameraInfo::setMatrices(osg::Camera* c) { view->set( c->getViewMatrix() ); viewInverse->set( osg::Matrix::inverse( c->getViewMatrix() ) ); projInverse->set( osg::Matrix::inverse( c->getProjectionMatrix() ) ); } void CameraGroup::update(const osg::Vec3d& position, const osg::Quat& orientation) { const Matrix masterView(osg::Matrix::translate(-position) * osg::Matrix::rotate(orientation.inverse())); _viewer->getCamera()->setViewMatrix(masterView); const Matrix& masterProj = _viewer->getCamera()->getProjectionMatrix(); double masterZoomFactor = zoomFactor(); for (CameraList::iterator i = _cameras.begin(); i != _cameras.end(); ++i) { const CameraInfo* info = i->get(); Camera* camera = info->getCamera(MAIN_CAMERA); if ( camera ) { const View::Slave& slave = _viewer->getSlave(info->getMainSlaveIndex()); #if SG_OSG_VERSION_LESS_THAN(3,0,0) // refreshes camera viewports (for now) info->updateCameras(); #endif Matrix viewMatrix; if (info->flags & GUI) { viewMatrix = osg::Matrix(); // identifty transform on the GUI camera } else if ((info->flags & VIEW_ABSOLUTE) != 0) viewMatrix = slave._viewOffset; else viewMatrix = masterView * slave._viewOffset; camera->setViewMatrix(viewMatrix); Matrix projectionMatrix; if (info->flags & GUI) { projectionMatrix = osg::Matrix::ortho2D(0, info->width, 0, info->height); } else if ((info->flags & PROJECTION_ABSOLUTE) != 0) { if (info->flags & ENABLE_MASTER_ZOOM) { if (info->relativeCameraParent < _cameras.size()) { // template projection matrix and view matrix of the current camera osg::Matrix P0 = slave._projectionOffset; osg::Matrix R = viewMatrix; // The already known projection and view matrix of the parent camera const CameraInfo* parentInfo = _cameras[info->relativeCameraParent].get(); RenderStageInfo prsi = parentInfo->cameras.find(MAIN_CAMERA)->second; osg::Matrix pP = prsi.camera->getProjectionMatrix(); osg::Matrix pR = prsi.camera->getViewMatrix(); // And the projection matrix derived from P0 so that the reference points match projectionMatrix = relativeProjection(P0, R, info->thisReference, pP, pR, info->parentReference); } else { // We want to zoom, so take the original matrix and apply the zoom to it. projectionMatrix = slave._projectionOffset; projectionMatrix.postMultScale(osg::Vec3d(masterZoomFactor, masterZoomFactor, 1)); } } else { projectionMatrix = slave._projectionOffset; } } else { projectionMatrix = masterProj * slave._projectionOffset; } CameraMap::const_iterator ii = info->cameras.find(FAR_CAMERA); if (ii == info->cameras.end() || !ii->second.camera.valid()) { camera->setProjectionMatrix(projectionMatrix); } else { Camera* farCamera = ii->second.camera; farCamera->setViewMatrix(viewMatrix); double left, right, bottom, top, parentNear, parentFar; projectionMatrix.getFrustum(left, right, bottom, top, parentNear, parentFar); if ((info->flags & FIXED_NEAR_FAR) == 0) { parentNear = _zNear; parentFar = _zFar; } if (parentFar < _nearField || _nearField == 0.0f) { camera->setProjectionMatrix(projectionMatrix); camera->setCullMask(camera->getCullMask() | simgear::BACKGROUND_BIT); camera->setClearMask(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT); farCamera->setNodeMask(0); } else { Matrix nearProj, farProj; makeNewProjMat(projectionMatrix, parentNear, _nearField, nearProj); makeNewProjMat(projectionMatrix, _nearField, parentFar, farProj); camera->setProjectionMatrix(nearProj); camera->setCullMask(camera->getCullMask() & ~simgear::BACKGROUND_BIT); camera->setClearMask(GL_DEPTH_BUFFER_BIT); farCamera->setProjectionMatrix(farProj); farCamera->setNodeMask(camera->getNodeMask()); } } } else { bool viewDone = false; Matrix viewMatrix; bool projectionDone = false; Matrix projectionMatrix; for ( CameraMap::const_iterator ii = info->cameras.begin(); ii != info->cameras.end(); ++ii ) { if ( ii->first == SHADOW_CAMERA ) { globals->get_renderer()->updateShadowCamera(info, position); continue; } if ( ii->second.fullscreen ) continue; Camera* camera = ii->second.camera.get(); int slaveIndex = ii->second.slaveIndex; const View::Slave& slave = _viewer->getSlave(slaveIndex); if ( !viewDone ) { if ((info->flags & VIEW_ABSOLUTE) != 0) viewMatrix = slave._viewOffset; else viewMatrix = masterView * slave._viewOffset; viewDone = true; } camera->setViewMatrix( viewMatrix ); if ( !projectionDone ) { if ((info->flags & PROJECTION_ABSOLUTE) != 0) { if (info->flags & ENABLE_MASTER_ZOOM) { if (info->relativeCameraParent < _cameras.size()) { // template projection matrix and view matrix of the current camera osg::Matrix P0 = slave._projectionOffset; osg::Matrix R = viewMatrix; // The already known projection and view matrix of the parent camera const CameraInfo* parentInfo = _cameras[info->relativeCameraParent].get(); RenderStageInfo prsi = parentInfo->cameras.find(MAIN_CAMERA)->second; osg::Matrix pP = prsi.camera->getProjectionMatrix(); osg::Matrix pR = prsi.camera->getViewMatrix(); // And the projection matrix derived from P0 so that the reference points match projectionMatrix = relativeProjection(P0, R, info->thisReference, pP, pR, info->parentReference); } else { // We want to zoom, so take the original matrix and apply the zoom to it. projectionMatrix = slave._projectionOffset; projectionMatrix.postMultScale(osg::Vec3d(masterZoomFactor, masterZoomFactor, 1)); } } else { projectionMatrix = slave._projectionOffset; } } else { projectionMatrix = masterProj * slave._projectionOffset; } projectionDone = true; } camera->setProjectionMatrix(projectionMatrix); } } } globals->get_renderer()->setPlanes( _zNear, _zFar ); } void CameraGroup::setCameraParameters(float vfov, float aspectRatio) { if (vfov != 0.0f && aspectRatio != 0.0f) _viewer->getCamera() ->setProjectionMatrixAsPerspective(vfov, 1.0f / aspectRatio, _zNear, _zFar); } double CameraGroup::getMasterAspectRatio() const { if (_cameras.empty()) return 0.0; const CameraInfo* info = _cameras.front(); osg::Camera* camera = info->getCamera(MAIN_CAMERA); if ( !camera ) camera = info->getCamera( GEOMETRY_CAMERA ); const osg::Viewport* viewport = camera->getViewport(); if (!viewport) { return 0.0; } return static_cast(viewport->height()) / viewport->width(); } } namespace { // A raw value for property nodes that references a class member via // an osg::ref_ptr. template class RefMember : public SGRawValue { public: RefMember (C *obj, T C::*ptr) : _obj(obj), _ptr(ptr) {} virtual ~RefMember () {} virtual T getValue () const { return _obj.get()->*_ptr; } virtual bool setValue (T value) { _obj.get()->*_ptr = value; return true; } virtual SGRawValue * clone () const { return new RefMember(_obj.get(), _ptr); } private: ref_ptr _obj; T C::* const _ptr; }; template RefMember makeRefMember(C *obj, T C::*ptr) { return RefMember(obj, ptr); } template void bindMemberToNode(SGPropertyNode* parent, const char* childName, C* obj, T C::*ptr, T value) { SGPropertyNode* valNode = parent->getNode(childName); RefMember refMember = makeRefMember(obj, ptr); if (!valNode) { valNode = parent->getNode(childName, true); valNode->tie(refMember, false); setValue(valNode, value); } else { valNode->tie(refMember, true); } } void buildViewport(flightgear::CameraInfo* info, SGPropertyNode* viewportNode, const osg::GraphicsContext::Traits *traits) { using namespace flightgear; bindMemberToNode(viewportNode, "x", info, &CameraInfo::x, 0.0); bindMemberToNode(viewportNode, "y", info, &CameraInfo::y, 0.0); bindMemberToNode(viewportNode, "width", info, &CameraInfo::width, static_cast(traits->width)); bindMemberToNode(viewportNode, "height", info, &CameraInfo::height, static_cast(traits->height)); } } namespace flightgear { // Mostly copied from osg's osgViewer/View.cpp static osg::Geometry* createPanoramicSphericalDisplayDistortionMesh( const Vec3& origin, const Vec3& widthVector, const Vec3& heightVector, double sphere_radius, double collar_radius, Image* intensityMap = 0, const Matrix& projectorMatrix = Matrix()) { osg::Vec3d center(0.0,0.0,0.0); osg::Vec3d eye(0.0,0.0,0.0); double distance = sqrt(sphere_radius*sphere_radius - collar_radius*collar_radius); bool flip = false; bool texcoord_flip = false; #if 0 osg::Vec3d projector = eye - osg::Vec3d(0.0,0.0, distance); OSG_INFO<<"createPanoramicSphericalDisplayDistortionMesh : Projector position = "<getStringValue(); TextureMap::iterator itr = _textureTargets.find(texName); if (itr == _textureTargets.end()) { // error return; } Viewport* viewport = camera->getViewport(); float width = viewport->width(); float height = viewport->height(); TextureRectangle* texRect = itr->second.get(); double radius = psNode->getDoubleValue("radius", 1.0); double collar = psNode->getDoubleValue("collar", 0.45); Geode* geode = new Geode(); geode->addDrawable(createPanoramicSphericalDisplayDistortionMesh( Vec3(0.0f,0.0f,0.0f), Vec3(width,0.0f,0.0f), Vec3(0.0f,height,0.0f), radius, collar)); // new we need to add the texture to the mesh, we do so by creating a // StateSet to contain the Texture StateAttribute. StateSet* stateset = geode->getOrCreateStateSet(); stateset->setTextureAttributeAndModes(0, texRect, StateAttribute::ON); stateset->setMode(GL_LIGHTING, StateAttribute::OFF); TexMat* texmat = new TexMat; texmat->setScaleByTextureRectangleSize(true); stateset->setTextureAttributeAndModes(0, texmat, osg::StateAttribute::ON); #if 0 if (!applyIntensityMapAsColours && intensityMap) { stateset->setTextureAttributeAndModes(1, new osg::Texture2D(intensityMap), osg::StateAttribute::ON); } #endif // add subgraph to render camera->addChild(geode); camera->setClearMask(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT); camera->setClearColor(osg::Vec4(0.0, 0.0, 0.0, 1.0)); camera->setComputeNearFarMode(osg::CullSettings::DO_NOT_COMPUTE_NEAR_FAR); camera->setCullingMode(osg::CullSettings::NO_CULLING); camera->setName("DistortionCorrectionCamera"); } CameraInfo* CameraGroup::buildCamera(SGPropertyNode* cameraNode) { WindowBuilder *wBuild = WindowBuilder::getWindowBuilder(); const SGPropertyNode* windowNode = cameraNode->getNode("window"); GraphicsWindow* window = 0; int cameraFlags = DO_INTERSECTION_TEST; if (windowNode) { // New style window declaration / definition window = wBuild->buildWindow(windowNode); } else { // Old style: suck window params out of camera block window = wBuild->buildWindow(cameraNode); } if (!window) { return 0; } Camera* camera = new Camera; camera->setAllowEventFocus(false); camera->setGraphicsContext(window->gc.get()); camera->setViewport(new Viewport); camera->setCullingMode(CullSettings::SMALL_FEATURE_CULLING | CullSettings::VIEW_FRUSTUM_CULLING); camera->setInheritanceMask(CullSettings::ALL_VARIABLES & ~(CullSettings::CULL_MASK | CullSettings::CULLING_MODE #if defined(HAVE_CULLSETTINGS_CLEAR_MASK) | CullSettings::CLEAR_MASK #endif )); osg::Matrix vOff; const SGPropertyNode* viewNode = cameraNode->getNode("view"); if (viewNode) { double heading = viewNode->getDoubleValue("heading-deg", 0.0); double pitch = viewNode->getDoubleValue("pitch-deg", 0.0); double roll = viewNode->getDoubleValue("roll-deg", 0.0); double x = viewNode->getDoubleValue("x", 0.0); double y = viewNode->getDoubleValue("y", 0.0); double z = viewNode->getDoubleValue("z", 0.0); // Build a view matrix, which is the inverse of a model // orientation matrix. vOff = (Matrix::translate(-x, -y, -z) * Matrix::rotate(-DegreesToRadians(heading), Vec3d(0.0, 1.0, 0.0), -DegreesToRadians(pitch), Vec3d(1.0, 0.0, 0.0), -DegreesToRadians(roll), Vec3d(0.0, 0.0, 1.0))); if (viewNode->getBoolValue("absolute", false)) cameraFlags |= VIEW_ABSOLUTE; } else { // Old heading parameter, works in the opposite direction double heading = cameraNode->getDoubleValue("heading-deg", 0.0); vOff.makeRotate(DegreesToRadians(heading), osg::Vec3(0, 1, 0)); } // Configuring the physical dimensions of a monitor SGPropertyNode* viewportNode = cameraNode->getNode("viewport", true); double physicalWidth = viewportNode->getDoubleValue("width", 1024); double physicalHeight = viewportNode->getDoubleValue("height", 768); double bezelHeightTop = 0; double bezelHeightBottom = 0; double bezelWidthLeft = 0; double bezelWidthRight = 0; const SGPropertyNode* physicalDimensionsNode = 0; if ((physicalDimensionsNode = cameraNode->getNode("physical-dimensions")) != 0) { physicalWidth = physicalDimensionsNode->getDoubleValue("width", physicalWidth); physicalHeight = physicalDimensionsNode->getDoubleValue("height", physicalHeight); const SGPropertyNode* bezelNode = 0; if ((bezelNode = physicalDimensionsNode->getNode("bezel")) != 0) { bezelHeightTop = bezelNode->getDoubleValue("top", bezelHeightTop); bezelHeightBottom = bezelNode->getDoubleValue("bottom", bezelHeightBottom); bezelWidthLeft = bezelNode->getDoubleValue("left", bezelWidthLeft); bezelWidthRight = bezelNode->getDoubleValue("right", bezelWidthRight); } } osg::Matrix pOff; unsigned parentCameraIndex = ~0u; osg::Vec2d parentReference[2]; osg::Vec2d thisReference[2]; SGPropertyNode* projectionNode = 0; if ((projectionNode = cameraNode->getNode("perspective")) != 0) { double fovy = projectionNode->getDoubleValue("fovy-deg", 55.0); double aspectRatio = projectionNode->getDoubleValue("aspect-ratio", 1.0); double zNear = projectionNode->getDoubleValue("near", 0.0); double zFar = projectionNode->getDoubleValue("far", zNear + 20000); double offsetX = projectionNode->getDoubleValue("offset-x", 0.0); double offsetY = projectionNode->getDoubleValue("offset-y", 0.0); double tan_fovy = tan(DegreesToRadians(fovy*0.5)); double right = tan_fovy * aspectRatio * zNear + offsetX; double left = -tan_fovy * aspectRatio * zNear + offsetX; double top = tan_fovy * zNear + offsetY; double bottom = -tan_fovy * zNear + offsetY; pOff.makeFrustum(left, right, bottom, top, zNear, zFar); cameraFlags |= PROJECTION_ABSOLUTE; if (projectionNode->getBoolValue("fixed-near-far", true)) cameraFlags |= FIXED_NEAR_FAR; } else if ((projectionNode = cameraNode->getNode("frustum")) != 0 || (projectionNode = cameraNode->getNode("ortho")) != 0) { double top = projectionNode->getDoubleValue("top", 0.0); double bottom = projectionNode->getDoubleValue("bottom", 0.0); double left = projectionNode->getDoubleValue("left", 0.0); double right = projectionNode->getDoubleValue("right", 0.0); double zNear = projectionNode->getDoubleValue("near", 0.0); double zFar = projectionNode->getDoubleValue("far", zNear + 20000); if (cameraNode->getNode("frustum")) { pOff.makeFrustum(left, right, bottom, top, zNear, zFar); cameraFlags |= PROJECTION_ABSOLUTE; } else { pOff.makeOrtho(left, right, bottom, top, zNear, zFar); cameraFlags |= (PROJECTION_ABSOLUTE | ORTHO); } if (projectionNode->getBoolValue("fixed-near-far", true)) cameraFlags |= FIXED_NEAR_FAR; } else if ((projectionNode = cameraNode->getNode("master-perspective")) != 0) { double zNear = projectionNode->getDoubleValue("eye-distance", 0.4*physicalWidth); double xoff = projectionNode->getDoubleValue("x-offset", 0); double yoff = projectionNode->getDoubleValue("y-offset", 0); double left = -0.5*physicalWidth - xoff; double right = 0.5*physicalWidth - xoff; double bottom = -0.5*physicalHeight - yoff; double top = 0.5*physicalHeight - yoff; pOff.makeFrustum(left, right, bottom, top, zNear, zNear*1000); cameraFlags |= PROJECTION_ABSOLUTE | ENABLE_MASTER_ZOOM; } else if ((projectionNode = cameraNode->getNode("right-of-perspective")) || (projectionNode = cameraNode->getNode("left-of-perspective")) || (projectionNode = cameraNode->getNode("above-perspective")) || (projectionNode = cameraNode->getNode("below-perspective")) || (projectionNode = cameraNode->getNode("reference-points-perspective"))) { std::string name = projectionNode->getStringValue("parent-camera"); for (unsigned i = 0; i < _cameras.size(); ++i) { if (_cameras[i]->name != name) continue; parentCameraIndex = i; } if (_cameras.size() <= parentCameraIndex) { SG_LOG(SG_VIEW, SG_ALERT, "CameraGroup::buildCamera: " "failed to find parent camera for relative camera!"); return 0; } const CameraInfo* parentInfo = _cameras[parentCameraIndex].get(); if (projectionNode->getNameString() == "right-of-perspective") { double tmp = (parentInfo->physicalWidth + 2*parentInfo->bezelWidthRight)/parentInfo->physicalWidth; parentReference[0] = osg::Vec2d(tmp, -1); parentReference[1] = osg::Vec2d(tmp, 1); tmp = (physicalWidth + 2*bezelWidthLeft)/physicalWidth; thisReference[0] = osg::Vec2d(-tmp, -1); thisReference[1] = osg::Vec2d(-tmp, 1); } else if (projectionNode->getNameString() == "left-of-perspective") { double tmp = (parentInfo->physicalWidth + 2*parentInfo->bezelWidthLeft)/parentInfo->physicalWidth; parentReference[0] = osg::Vec2d(-tmp, -1); parentReference[1] = osg::Vec2d(-tmp, 1); tmp = (physicalWidth + 2*bezelWidthRight)/physicalWidth; thisReference[0] = osg::Vec2d(tmp, -1); thisReference[1] = osg::Vec2d(tmp, 1); } else if (projectionNode->getNameString() == "above-perspective") { double tmp = (parentInfo->physicalHeight + 2*parentInfo->bezelHeightTop)/parentInfo->physicalHeight; parentReference[0] = osg::Vec2d(-1, tmp); parentReference[1] = osg::Vec2d(1, tmp); tmp = (physicalHeight + 2*bezelHeightBottom)/physicalHeight; thisReference[0] = osg::Vec2d(-1, -tmp); thisReference[1] = osg::Vec2d(1, -tmp); } else if (projectionNode->getNameString() == "below-perspective") { double tmp = (parentInfo->physicalHeight + 2*parentInfo->bezelHeightBottom)/parentInfo->physicalHeight; parentReference[0] = osg::Vec2d(-1, -tmp); parentReference[1] = osg::Vec2d(1, -tmp); tmp = (physicalHeight + 2*bezelHeightTop)/physicalHeight; thisReference[0] = osg::Vec2d(-1, tmp); thisReference[1] = osg::Vec2d(1, tmp); } else if (projectionNode->getNameString() == "reference-points-perspective") { SGPropertyNode* parentNode = projectionNode->getNode("parent", true); SGPropertyNode* thisNode = projectionNode->getNode("this", true); SGPropertyNode* pointNode; pointNode = parentNode->getNode("point", 0, true); parentReference[0][0] = pointNode->getDoubleValue("x", 0)*2/parentInfo->physicalWidth; parentReference[0][1] = pointNode->getDoubleValue("y", 0)*2/parentInfo->physicalHeight; pointNode = parentNode->getNode("point", 1, true); parentReference[1][0] = pointNode->getDoubleValue("x", 0)*2/parentInfo->physicalWidth; parentReference[1][1] = pointNode->getDoubleValue("y", 0)*2/parentInfo->physicalHeight; pointNode = thisNode->getNode("point", 0, true); thisReference[0][0] = pointNode->getDoubleValue("x", 0)*2/physicalWidth; thisReference[0][1] = pointNode->getDoubleValue("y", 0)*2/physicalHeight; pointNode = thisNode->getNode("point", 1, true); thisReference[1][0] = pointNode->getDoubleValue("x", 0)*2/physicalWidth; thisReference[1][1] = pointNode->getDoubleValue("y", 0)*2/physicalHeight; } pOff = osg::Matrix::perspective(45, physicalWidth/physicalHeight, 1, 20000); cameraFlags |= PROJECTION_ABSOLUTE | ENABLE_MASTER_ZOOM; } else { // old style shear parameters double shearx = cameraNode->getDoubleValue("shear-x", 0); double sheary = cameraNode->getDoubleValue("shear-y", 0); pOff.makeTranslate(-shearx, -sheary, 0); } const SGPropertyNode* textureNode = cameraNode->getNode("texture"); if (textureNode) { string texName = textureNode->getStringValue("name"); int tex_width = textureNode->getIntValue("width"); int tex_height = textureNode->getIntValue("height"); TextureRectangle* texture = new TextureRectangle; texture->setTextureSize(tex_width, tex_height); texture->setInternalFormat(GL_RGB); texture->setFilter(Texture::MIN_FILTER, Texture::LINEAR); texture->setFilter(Texture::MAG_FILTER, Texture::LINEAR); texture->setWrap(Texture::WRAP_S, Texture::CLAMP_TO_EDGE); texture->setWrap(Texture::WRAP_T, Texture::CLAMP_TO_EDGE); camera->setDrawBuffer(GL_FRONT); camera->setReadBuffer(GL_FRONT); camera->setRenderTargetImplementation(Camera::FRAME_BUFFER_OBJECT); camera->attach(Camera::COLOR_BUFFER, texture); _textureTargets[texName] = texture; } else { camera->setDrawBuffer(GL_BACK); camera->setReadBuffer(GL_BACK); } const SGPropertyNode* psNode = cameraNode->getNode("panoramic-spherical"); bool useMasterSceneGraph = !psNode; CameraInfo* info = globals->get_renderer()->buildRenderingPipeline(this, cameraFlags, camera, vOff, pOff, window->gc.get(), useMasterSceneGraph); info->name = cameraNode->getStringValue("name"); info->physicalWidth = physicalWidth; info->physicalHeight = physicalHeight; info->bezelHeightTop = bezelHeightTop; info->bezelHeightBottom = bezelHeightBottom; info->bezelWidthLeft = bezelWidthLeft; info->bezelWidthRight = bezelWidthRight; info->relativeCameraParent = parentCameraIndex; info->parentReference[0] = parentReference[0]; info->parentReference[1] = parentReference[1]; info->thisReference[0] = thisReference[0]; info->thisReference[1] = thisReference[1]; // If a viewport isn't set on the camera, then it's hard to dig it // out of the SceneView objects in the viewer, and the coordinates // of mouse events are somewhat bizzare. buildViewport(info, viewportNode, window->gc->getTraits()); info->updateCameras(); // Distortion camera needs the viewport which is created by addCamera(). if (psNode) { info->flags = info->flags | VIEW_ABSOLUTE; buildDistortionCamera(psNode, camera); } return info; } CameraInfo* CameraGroup::buildGUICamera(SGPropertyNode* cameraNode, GraphicsWindow* window) { WindowBuilder *wBuild = WindowBuilder::getWindowBuilder(); const SGPropertyNode* windowNode = (cameraNode ? cameraNode->getNode("window") : 0); if (!window && windowNode) { // New style window declaration / definition window = wBuild->buildWindow(windowNode); } if (!window) { // buildWindow can fail SG_LOG(SG_VIEW, SG_WARN, "CameraGroup::buildGUICamera: failed to build a window"); return NULL; } Camera* camera = new Camera; camera->setName( "GUICamera" ); camera->setAllowEventFocus(false); camera->setGraphicsContext(window->gc.get()); camera->setViewport(new Viewport); camera->setClearMask(0); camera->setInheritanceMask(CullSettings::ALL_VARIABLES & ~(CullSettings::COMPUTE_NEAR_FAR_MODE | CullSettings::CULLING_MODE #if defined(HAVE_CULLSETTINGS_CLEAR_MASK) | CullSettings::CLEAR_MASK #endif )); camera->setComputeNearFarMode(osg::CullSettings::DO_NOT_COMPUTE_NEAR_FAR); camera->setCullingMode(osg::CullSettings::NO_CULLING); camera->setProjectionResizePolicy(Camera::FIXED); camera->setReferenceFrame(Transform::ABSOLUTE_RF); const int cameraFlags = GUI | DO_INTERSECTION_TEST; CameraInfo* result = new CameraInfo(cameraFlags); // The camera group will always update the camera camera->setReferenceFrame(Transform::ABSOLUTE_RF); getViewer()->addSlave(camera, Matrixd::identity(), Matrixd::identity(), false); //installCullVisitor(camera); int slaveIndex = getViewer()->getNumSlaves() - 1; result->addCamera( MAIN_CAMERA, camera, slaveIndex ); camera->setRenderOrder(Camera::POST_RENDER, slaveIndex); addCamera(result); // XXX Camera needs to be drawn last; eventually the render order // should be assigned by a camera manager. camera->setRenderOrder(osg::Camera::POST_RENDER, 10000); SGPropertyNode* viewportNode = cameraNode->getNode("viewport", true); buildViewport(result, viewportNode, window->gc->getTraits()); // Disable statistics for the GUI camera. camera->setStats(0); result->updateCameras(); return result; } CameraGroup* CameraGroup::buildCameraGroup(osgViewer::Viewer* viewer, SGPropertyNode* gnode) { sgUserDataInit( globals->get_props() ); CameraGroup* cgroup = new CameraGroup(viewer); for (int i = 0; i < gnode->nChildren(); ++i) { SGPropertyNode* pNode = gnode->getChild(i); const char* name = pNode->getName(); if (!strcmp(name, "camera")) { cgroup->buildCamera(pNode); } else if (!strcmp(name, "window")) { WindowBuilder::getWindowBuilder()->buildWindow(pNode); } else if (!strcmp(name, "gui")) { cgroup->buildGUICamera(pNode); } } bindMemberToNode(gnode, "znear", cgroup, &CameraGroup::_zNear, .1f); bindMemberToNode(gnode, "zfar", cgroup, &CameraGroup::_zFar, 120000.0f); bindMemberToNode(gnode, "near-field", cgroup, &CameraGroup::_nearField, 100.0f); return cgroup; } void CameraGroup::setCameraCullMasks(Node::NodeMask nm) { for (CameraIterator i = camerasBegin(), e = camerasEnd(); i != e; ++i) { CameraInfo* info = i->get(); if (info->flags & GUI) continue; osg::ref_ptr farCamera = info->getCamera(FAR_CAMERA); osg::Camera* camera = info->getCamera( MAIN_CAMERA ); if (camera) { if (farCamera.valid() && farCamera->getNodeMask() != 0) { camera->setCullMask(nm & ~simgear::BACKGROUND_BIT); camera->setCullMaskLeft(nm & ~simgear::BACKGROUND_BIT); camera->setCullMaskRight(nm & ~simgear::BACKGROUND_BIT); farCamera->setCullMask(nm); farCamera->setCullMaskLeft(nm); farCamera->setCullMaskRight(nm); } else { camera->setCullMask(nm); camera->setCullMaskLeft(nm); camera->setCullMaskRight(nm); } } else { camera = info->getCamera( GEOMETRY_CAMERA ); if (camera == 0) continue; camera->setCullMask( nm & ~simgear::MODELLIGHT_BIT ); } } } void CameraGroup::resized() { for (CameraIterator i = camerasBegin(), e = camerasEnd(); i != e; ++i) { CameraInfo *info = i->get(); Camera* camera = info->getCamera( MAIN_CAMERA ); if ( camera == 0 ) camera = info->getCamera( DISPLAY_CAMERA ); const Viewport* viewport = camera->getViewport(); info->x = viewport->x(); info->y = viewport->y(); info->width = viewport->width(); info->height = viewport->height(); info->resized( info->width, info->height ); } } const CameraInfo* CameraGroup::getGUICamera() const { ConstCameraIterator result = std::find_if(camerasBegin(), camerasEnd(), FlagTester(GUI)); if (result == camerasEnd()) { return NULL; } return *result; } Camera* getGUICamera(CameraGroup* cgroup) { const CameraInfo* info = cgroup->getGUICamera(); if (!info) { return NULL; } return info->getCamera(MAIN_CAMERA); } static bool computeCameraIntersection(const CameraInfo* cinfo, const osgGA::GUIEventAdapter* ea, osgUtil::LineSegmentIntersector::Intersections& intersections) { using osgUtil::Intersector; using osgUtil::LineSegmentIntersector; double x, y; eventToWindowCoords(ea, x, y); if (!(cinfo->flags & CameraGroup::DO_INTERSECTION_TEST)) return false; const Camera* camera = cinfo->getCamera(MAIN_CAMERA); if ( !camera ) camera = cinfo->getCamera( GEOMETRY_CAMERA ); if (camera->getGraphicsContext() != ea->getGraphicsContext()) return false; const Viewport* viewport = camera->getViewport(); double epsilon = 0.5; if (!(x >= viewport->x() - epsilon && x < viewport->x() + viewport->width() -1.0 + epsilon && y >= viewport->y() - epsilon && y < viewport->y() + viewport->height() -1.0 + epsilon)) return false; Vec4d start(x, y, 0.0, 1.0); Vec4d end(x, y, 1.0, 1.0); Matrix windowMat = viewport->computeWindowMatrix(); Matrix startPtMat = Matrix::inverse(camera->getProjectionMatrix() * windowMat); Matrix endPtMat; const Camera* farCamera = cinfo->getCamera( FAR_CAMERA ); if (!farCamera || farCamera->getNodeMask() == 0) endPtMat = startPtMat; else endPtMat = Matrix::inverse(farCamera->getProjectionMatrix() * windowMat); start = start * startPtMat; start /= start.w(); end = end * endPtMat; end /= end.w(); ref_ptr picker = new LineSegmentIntersector(Intersector::VIEW, Vec3d(start.x(), start.y(), start.z()), Vec3d(end.x(), end.y(), end.z())); osgUtil::IntersectionVisitor iv(picker.get()); iv.setTraversalMask( ~simgear::MODELLIGHT_BIT ); const_cast(camera)->accept(iv); if (picker->containsIntersections()) { intersections = picker->getIntersections(); return true; } return false; } bool computeIntersections(const CameraGroup* cgroup, const osgGA::GUIEventAdapter* ea, osgUtil::LineSegmentIntersector::Intersections& intersections) { // test the GUI first const CameraInfo* guiCamera = cgroup->getGUICamera(); if (guiCamera && computeCameraIntersection(guiCamera, ea, intersections)) return true; // Find camera that contains event for (CameraGroup::ConstCameraIterator iter = cgroup->camerasBegin(), e = cgroup->camerasEnd(); iter != e; ++iter) { const CameraInfo* cinfo = iter->get(); if (cinfo == guiCamera) continue; if (computeCameraIntersection(cinfo, ea, intersections)) return true; } intersections.clear(); return false; } void warpGUIPointer(CameraGroup* cgroup, int x, int y) { using osgViewer::GraphicsWindow; Camera* guiCamera = getGUICamera(cgroup); if (!guiCamera) return; Viewport* vport = guiCamera->getViewport(); GraphicsWindow* gw = dynamic_cast(guiCamera->getGraphicsContext()); if (!gw) return; globals->get_renderer()->getEventHandler()->setMouseWarped(); // Translate the warp request into the viewport of the GUI camera, // send the request to the window, then transform the coordinates // for the Viewer's event queue. double wx = x + vport->x(); double wyUp = vport->height() + vport->y() - y; double wy; const GraphicsContext::Traits* traits = gw->getTraits(); if (gw->getEventQueue()->getCurrentEventState()->getMouseYOrientation() == osgGA::GUIEventAdapter::Y_INCREASING_DOWNWARDS) { wy = traits->height - wyUp; } else { wy = wyUp; } gw->getEventQueue()->mouseWarped(wx, wy); gw->requestWarpPointer(wx, wy); osgGA::GUIEventAdapter* eventState = cgroup->getViewer()->getEventQueue()->getCurrentEventState(); double viewerX = (eventState->getXmin() + ((wx / double(traits->width)) * (eventState->getXmax() - eventState->getXmin()))); double viewerY = (eventState->getYmin() + ((wyUp / double(traits->height)) * (eventState->getYmax() - eventState->getYmin()))); cgroup->getViewer()->getEventQueue()->mouseWarped(viewerX, viewerY); } }