// fragment.hxx -- routines to handle "atomic" display objects // // Written by Curtis Olson, started August 1998. // // Copyright (C) 1998 Curtis L. Olson - curt@me.umn.edu // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. // // $Id$ #ifndef _FRAGMENT_HXX #define _FRAGMENT_HXX #ifndef __cplusplus # error This library requires C++ #endif #ifdef HAVE_CONFIG_H # include #endif #ifdef HAVE_WINDOWS_H # include #endif #include #include #include #include #include #include #include FG_USING_STD(vector); struct fgFACE { int n1, n2, n3; fgFACE( int a = 0, int b =0, int c =0 ) : n1(a), n2(b), n3(c) {} fgFACE( const fgFACE & image ) : n1(image.n1), n2(image.n2), n3(image.n3) {} fgFACE& operator= ( const fgFACE & image ) { n1 = image.n1; n2 = image.n2; n3 = image.n3; return *this; } ~fgFACE() {} }; inline bool operator== ( const fgFACE& lhs, const fgFACE& rhs ) { return (lhs.n1 == rhs.n1) && (lhs.n2 == rhs.n2) && (lhs.n3 == rhs.n3); } // Forward declarations class fgTILE; class fgMATERIAL; // Object fragment data class class fgFRAGMENT { private: public: // culling data for this object fragment (fine grain culling) Point3D center; double bounding_radius; // variable offset data for this object fragment for this frame // fgCartesianPoint3d tile_offset; // saved transformation matrix for this fragment (used by renderer) // GLfloat matrix[16]; // tile_ptr & material_ptr are set so that when we traverse the // list of fragments we can quickly reference back the tile or // material property this fragment is assigned to. // material property pointer fgMATERIAL *material_ptr; // tile pointer fgTILE *tile_ptr; // OpenGL display list for fragment data GLint display_list; // face list (this indexes into the master tile vertex list) typedef vector < fgFACE > container; typedef container::iterator iterator; typedef container::const_iterator const_iterator; container faces; public: // number of faces in this fragment int num_faces() { return faces.size(); } // Add a face to the face list void add_face(int n1, int n2, int n3) { faces.push_back( fgFACE(n1,n2,n3) ); } // test if line intesects with this fragment. p0 and p1 are the // two line end points of the line. If side_flag is true, check // to see that end points are on opposite sides of face. Returns // 1 if it intersection found, 0 otherwise. If it intesects, // result is the point of intersection int intersect( const Point3D& end0, const Point3D& end1, int side_flag, Point3D& result) const; // Constructors fgFRAGMENT () { /*faces.reserve(512);*/} fgFRAGMENT ( const fgFRAGMENT &image ); // Destructor ~fgFRAGMENT() { faces.erase( faces.begin(), faces.end() ); } // operators fgFRAGMENT & operator = ( const fgFRAGMENT & rhs ); bool operator < ( const fgFRAGMENT & rhs ) const { // This is completely arbitrary. It satisfies RW's STL implementation return bounding_radius < rhs.bounding_radius; } void init() { faces.erase( faces.begin(), faces.end() ); } int deleteDisplayList() { xglDeleteLists( display_list, 1 ); return 0; } friend bool operator== ( const fgFRAGMENT & lhs, const fgFRAGMENT & rhs ); }; inline bool operator == ( const fgFRAGMENT & lhs, const fgFRAGMENT & rhs ) { return lhs.center == rhs.center; } #endif // _FRAGMENT_HXX