#ifdef HAVE_CONFIG_H # include #endif #if !defined( _MSC_VER ) && !defined( __MINGW32__ ) # include // for bzero() #else # define bzero(a,b) memset(a,0,b) #endif #include #include #include #include #include #include // endian tests #include #include #include #include #include #include #include "UGear.hxx" #include "UGear_command.hxx" #include "UGear_opengc.hxx" #include "UGear_telnet.hxx" using std::cout; using std::endl; using std::string; // Network channels static netSocket fdm_sock, ctrls_sock, opengc_sock; // ugear data UGTrack track; // Default ports static int fdm_port = 5505; static int ctrls_port = 5506; static int opengc_port = 6000; // Default path static string infile = ""; static string flight_dir = ""; static string serialdev = ""; static string outfile = ""; // Master time counter float sim_time = 0.0f; double frame_us = 0.0f; // sim control SGTimeStamp last_time_stamp; SGTimeStamp current_time_stamp; // altitude offset double alt_offset = 0.0; // skip initial seconds double skip = 0.0; // for speed estimate double last_lat = 0.0, last_lon = 0.0; double kts_filter = 0.0; bool inited = false; bool run_real_time = true; bool ignore_checksum = false; bool sg_swap = false; bool use_ground_track_hdg = false; bool use_ground_speed = false; bool est_controls = false; float gps_status = -1.0; // The function htond is defined this way due to the way some // processors and OSes treat floating point values. Some will raise // an exception whenever a "bad" floating point value is loaded into a // floating point register. Solaris is notorious for this, but then // so is LynxOS on the PowerPC. By translating the data in place, // there is no need to load a FP register with the "corruped" floating // point value. By doing the BIG_ENDIAN test, I can optimize the // routine for big-endian processors so it can be as efficient as // possible static void htond (double &x) { if ( sgIsLittleEndian() ) { int *Double_Overlay; int Holding_Buffer; Double_Overlay = (int *) &x; Holding_Buffer = Double_Overlay [0]; Double_Overlay [0] = htonl (Double_Overlay [1]); Double_Overlay [1] = htonl (Holding_Buffer); } else { return; } } // Float version static void htonf (float &x) { if ( sgIsLittleEndian() ) { int *Float_Overlay; int Holding_Buffer; Float_Overlay = (int *) &x; Holding_Buffer = Float_Overlay [0]; Float_Overlay [0] = htonl (Holding_Buffer); } else { return; } } static void ugear2fg( gps *gpspacket, imu *imupacket, nav *navpacket, servo *servopacket, health *healthpacket, FGNetFDM *fdm, FGNetCtrls *ctrls ) { unsigned int i; // Version sanity checking fdm->version = FG_NET_FDM_VERSION; // Aero parameters fdm->longitude = navpacket->lon * SG_DEGREES_TO_RADIANS; fdm->latitude = navpacket->lat * SG_DEGREES_TO_RADIANS; fdm->altitude = navpacket->alt + alt_offset; fdm->agl = -9999.0; fdm->psi = imupacket->psi; // heading fdm->phi = imupacket->phi; // roll fdm->theta = imupacket->the; // pitch; fdm->phidot = 0.0; fdm->thetadot = 0.0; fdm->psidot = 0.0; // estimate speed // double az1, az2, dist; // geo_inverse_wgs_84( fdm->altitude, last_lat, last_lon, // fdm->latitude, fdm->longitude, &az1, &az2, &dist ); // last_lat = fdm->latitude; // last_lon = fdm->longitude; // double v_ms = dist / (frame_us / 1000000); // double v_kts = v_ms * SG_METER_TO_NM * 3600; // kts_filter = (0.9 * kts_filter) + (0.1 * v_kts); // printf("dist = %.5f kts est = %.2f\n", dist, kts_filter); double vn = navpacket->vn; double ve = navpacket->ve; double vd = navpacket->vd; if ( use_ground_track_hdg ) { fdm->psi = SGD_PI * 0.5 - atan2(vn, ve); // heading } double mps = 0.0; if ( use_ground_speed ) { mps = sqrt( vn*vn + ve*ve + vd*vd ); } else { mps = imupacket->Pt; } // double mph = mps * 3600 / 1609.3440; double kts = mps * SG_MPS_TO_KT; fdm->vcas = kts; // printf("speed = %.2f mph %.2f kts\n", mph, kts ); static double Ps = 0.0, Ps_last = 0.0, t_last = 0.0; Ps_last = Ps; Ps = 0.92 * Ps + 0.08 * imupacket->Ps; double climb = (Ps - Ps_last) / (imupacket->time - t_last); t_last = imupacket->time; static double climbf = 0.0; climbf = 0.994 * climbf + 0.006 * climb; fdm->climb_rate = climbf; // fps static double Ps_error = 0.0; static double Ps_count = 0; const double span = 10000.0; Ps_count += 1.0; if (Ps_count > (span-1.0)) { Ps_count = (span-1.0); } double error = navpacket->alt - Ps; Ps_error = (Ps_count/span) * Ps_error + ((span-Ps_count)/span) * error; fdm->altitude = Ps + Ps_error; /* printf("%.3f, %.3f, %.3f, %.3f, %.8f, %.8f, %.3f, %.3f, %.3f, %.3f, %.3f\n", imupacket->time, imupacket->the, -navpacket->vd, climbf, navpacket->lat, navpacket->lon, gpspacket->alt, navpacket->alt, imupacket->Ps, Ps, Ps + Ps_error); */ // cout << "climb rate = " << aero->hdota << endl; fdm->v_north = 0.0; fdm->v_east = 0.0; fdm->v_down = 0.0; fdm->v_wind_body_north = 0.0; fdm->v_wind_body_east = 0.0; fdm->v_wind_body_down = 0.0; fdm->stall_warning = 0.0; fdm->A_X_pilot = 0.0; fdm->A_Y_pilot = 0.0; fdm->A_Z_pilot = 0.0 /* (should be -G) */; // Engine parameters fdm->num_engines = 1; fdm->eng_state[0] = 2; // cout << "state = " << fdm->eng_state[0] << endl; double rpm = 5000.0 - ((double)servopacket->chn[2] / 65536.0)*3500.0; if ( rpm < 0.0 ) { rpm = 0.0; } if ( rpm > 5000.0 ) { rpm = 5000.0; } fdm->rpm[0] = rpm; fdm->fuel_flow[0] = 0.0; fdm->egt[0] = 0.0; // cout << "egt = " << aero->EGT << endl; fdm->oil_temp[0] = 0.0; fdm->oil_px[0] = 0.0; // Consumables fdm->num_tanks = 2; fdm->fuel_quantity[0] = 0.0; fdm->fuel_quantity[1] = 0.0; // Gear and flaps fdm->num_wheels = 3; fdm->wow[0] = 0; fdm->wow[1] = 0; fdm->wow[2] = 0; // the following really aren't used in this context fdm->cur_time = 0; fdm->warp = 0; fdm->visibility = 0; // cout << "Flap deflection = " << aero->dflap << endl; fdm->left_flap = 0.0; fdm->right_flap = 0.0; if ( est_controls ) { static float est_elev = 0.0; static float est_aileron = 0.0; static float est_rudder = 0.0; est_elev = 0.99 * est_elev + 0.01 * (imupacket->q * 4); est_aileron = 0.95 * est_aileron + 0.05 * (imupacket->p * 5); est_rudder = 0.95 * est_rudder + 0.05 * (imupacket->r * 2); ctrls->elevator = fdm->elevator = -est_elev; ctrls->aileron = fdm->left_aileron = est_aileron; fdm->right_aileron = -est_aileron; ctrls->rudder = fdm->rudder = est_rudder; } else { ctrls->elevator = fdm->elevator = 1.0 - ((double)servopacket->chn[1] / 32768.0); ctrls->aileron = fdm->left_aileron = 1.0 - ((double)servopacket->chn[0] / 32768.0); fdm->right_aileron = ((double)servopacket->chn[0] / 32768.0) - 1.0; ctrls->rudder = fdm->rudder = 1.0 - ((double)servopacket->chn[3] / 32768.0); ctrls->elevator *= 3.0; ctrls->aileron *= 3.0; } fdm->elevator_trim_tab = 0.0; fdm->left_flap = 0.0; fdm->right_flap = 0.0; fdm->nose_wheel = 0.0; fdm->speedbrake = 0.0; fdm->spoilers = 0.0; // Convert the net buffer to network format fdm->version = htonl(fdm->version); htond(fdm->longitude); htond(fdm->latitude); htond(fdm->altitude); htonf(fdm->agl); htonf(fdm->phi); htonf(fdm->theta); htonf(fdm->psi); htonf(fdm->alpha); htonf(fdm->beta); htonf(fdm->phidot); htonf(fdm->thetadot); htonf(fdm->psidot); htonf(fdm->vcas); htonf(fdm->climb_rate); htonf(fdm->v_north); htonf(fdm->v_east); htonf(fdm->v_down); htonf(fdm->v_wind_body_north); htonf(fdm->v_wind_body_east); htonf(fdm->v_wind_body_down); htonf(fdm->A_X_pilot); htonf(fdm->A_Y_pilot); htonf(fdm->A_Z_pilot); htonf(fdm->stall_warning); htonf(fdm->slip_deg); for ( i = 0; i < fdm->num_engines; ++i ) { fdm->eng_state[i] = htonl(fdm->eng_state[i]); htonf(fdm->rpm[i]); htonf(fdm->fuel_flow[i]); htonf(fdm->egt[i]); htonf(fdm->cht[i]); htonf(fdm->mp_osi[i]); htonf(fdm->tit[i]); htonf(fdm->oil_temp[i]); htonf(fdm->oil_px[i]); } fdm->num_engines = htonl(fdm->num_engines); for ( i = 0; i < fdm->num_tanks; ++i ) { htonf(fdm->fuel_quantity[i]); } fdm->num_tanks = htonl(fdm->num_tanks); for ( i = 0; i < fdm->num_wheels; ++i ) { fdm->wow[i] = htonl(fdm->wow[i]); htonf(fdm->gear_pos[i]); htonf(fdm->gear_steer[i]); htonf(fdm->gear_compression[i]); } fdm->num_wheels = htonl(fdm->num_wheels); fdm->cur_time = htonl( fdm->cur_time ); fdm->warp = htonl( fdm->warp ); htonf(fdm->visibility); htonf(fdm->elevator); htonf(fdm->elevator_trim_tab); htonf(fdm->left_flap); htonf(fdm->right_flap); htonf(fdm->left_aileron); htonf(fdm->right_aileron); htonf(fdm->rudder); htonf(fdm->nose_wheel); htonf(fdm->speedbrake); htonf(fdm->spoilers); #if 0 ctrls->version = FG_NET_CTRLS_VERSION; ctrls->elevator_trim = 0.0; ctrls->flaps = 0.0; htonl(ctrls->version); htond(ctrls->aileron); htond(ctrls->rudder); htond(ctrls->elevator); htond(ctrls->elevator_trim); htond(ctrls->flaps); #endif } static void ugear2opengc( gps *gpspacket, imu *imupacket, nav *navpacket, servo *servopacket, health *healthpacket, ogcFGData *ogc ) { // Version sanity checking ogc->version_id = OGC_VERSION; // Aero parameters ogc->longitude = navpacket->lon; ogc->latitude = navpacket->lat; ogc->heading = imupacket->psi * SG_RADIANS_TO_DEGREES; // heading ogc->bank = imupacket->phi * SG_RADIANS_TO_DEGREES; // roll ogc->pitch = imupacket->the * SG_RADIANS_TO_DEGREES; // pitch; ogc->phi_dot = 0.0; ogc->theta_dot = 0.0; ogc->psi_dot = 0.0; ogc->alpha = 0.0; ogc->beta = 0.0; ogc->alpha_dot = 0.0; ogc->beta_dot = 0.0; ogc->left_aileron = 1.0 - ((double)servopacket->chn[0] / 32768.0); ogc->right_aileron = ((double)servopacket->chn[0] / 32768.0) - 1.0; ogc->elevator = 1.0 - ((double)servopacket->chn[1] / 32768.0); ogc->elevator_trim = 0.0; ogc->rudder = 1.0 - ((double)servopacket->chn[3] / 32768.0); ogc->flaps = 0.0; ogc->flaps_cmd = 0.0; ogc->wind = 0.0; ogc->wind_dir = 0.0; // estimate speed // double az1, az2, dist; // geo_inverse_wgs_84( fdm->altitude, last_lat, last_lon, // fdm->latitude, fdm->longitude, &az1, &az2, &dist ); // last_lat = fdm->latitude; // last_lon = fdm->longitude; // double v_ms = dist / (frame_us / 1000000); // double v_kts = v_ms * SG_METER_TO_NM * 3600; // kts_filter = (0.9 * kts_filter) + (0.1 * v_kts); // printf("dist = %.5f kts est = %.2f\n", dist, kts_filter); double vn = navpacket->vn; double ve = navpacket->ve; double vd = navpacket->vd; if ( use_ground_track_hdg ) { ogc->heading = (SGD_PI * 0.5 - atan2(vn, ve)) * SG_RADIANS_TO_DEGREES; } if ( ogc->heading < 0 ) { ogc->heading += 360.0; } double mps = 0.0; if ( use_ground_speed ) { mps = sqrt( vn*vn + ve*ve + vd*vd ); } else { mps = imupacket->Pt; } // double mph = mps * 3600 / 1609.3440; double kts = mps * SG_MPS_TO_KT; ogc->v_kcas = kts; // printf("speed = %.2f mph %.2f kts\n", mph, kts ); static double Ps = 0.0, Ps_last = 0.0, t_last = 0.0; Ps_last = Ps; Ps = 0.92 * Ps + 0.08 * imupacket->Ps; double climb = (Ps - Ps_last) / (imupacket->time - t_last); t_last = imupacket->time; static double climbf = 0.0; climbf = 0.994 * climbf + 0.006 * climb; ogc->vvi = climbf; // fps // uncomment one of the following schemes for setting elevation: // use the navigation (inertially augmented gps estimate) // ogc->altitude = ogc->elevation // = (navpacket->alt + alt_offset * SG_METER_TO_FEET); // use estimate error between pressure sensor and gps altitude over time // use pressure sensor + error average for altitude estimate. static double Ps_error = 0.0; static double Ps_count = 0; const double span = 10000.0; Ps_count += 1.0; if (Ps_count > (span-1.0)) { Ps_count = (span-1.0); } double error = navpacket->alt - Ps; Ps_error = (Ps_count/span) * Ps_error + ((span-Ps_count)/span) * error; ogc->elevation = (Ps + Ps_error) * SG_METER_TO_FEET; /* printf("%.3f, %.3f, %.3f, %.3f, %.8f, %.8f, %.3f, %.3f, %.3f, %.3f, %.3f\n", imupacket->time, imupacket->the, -navpacket->vd, climbf, navpacket->lat, navpacket->lon, gpspacket->alt, navpacket->alt, imupacket->Ps, Ps, Ps + Ps_error); */ if ( est_controls ) { static float est_elev = 0.0; static float est_aileron = 0.0; static float est_rudder = 0.0; est_elev = 0.99 * est_elev + 0.01 * (imupacket->q * 4); est_aileron = 0.95 * est_aileron + 0.05 * (imupacket->p * 5); est_rudder = 0.95 * est_rudder + 0.05 * (imupacket->r * 2); ogc->elevator = -est_elev; ogc->left_aileron = est_aileron; ogc->right_aileron = -est_aileron; ogc->rudder = est_rudder; } else { ogc->elevator = 1.0 - ((double)servopacket->chn[1] / 32768.0); ogc->left_aileron = 1.0 - ((double)servopacket->chn[0] / 32768.0); ogc->right_aileron = ((double)servopacket->chn[0] / 32768.0) - 1.0; ogc->rudder = 1.0 - ((double)servopacket->chn[3] / 32768.0); } ogc->elevator *= 4.0; ogc->left_aileron *= 4.0; ogc->right_aileron *= 4.0; ogc->rudder *= 4.0; // additional "abused" data fields ogc->egt[0] = ogc->bank - healthpacket->target_roll_deg; // flight director target roll ogc->egt[1] = -ogc->pitch + healthpacket->target_pitch_deg; // flight director target pitch ogc->egt[2] = healthpacket->target_heading_deg; // target heading bug ogc->egt[3] = healthpacket->target_climb_fps; // target VVI bug ogc->epr[0] = healthpacket->target_altitude_ft; // target altitude bug ogc->epr[1] = 30.0; // target speed bug ogc->epr[2] = gps_status; // gps status box } static void send_data_udp( gps *gpspacket, imu *imupacket, nav *navpacket, servo *servopacket, health *healthpacket ) { int len; int ogcsize = sizeof( ogcFGData ); int fdmsize = sizeof( FGNetFDM ); // int ctrlsize = sizeof( FGNetCtrls ); // cout << "Running main loop" << endl; ogcFGData fgogc; FGNetFDM fgfdm; FGNetCtrls fgctrls; ugear2fg( gpspacket, imupacket, navpacket, servopacket, healthpacket, &fgfdm, &fgctrls ); ugear2opengc( gpspacket, imupacket, navpacket, servopacket, healthpacket, &fgogc ); len = opengc_sock.send(&fgogc, ogcsize, 0); len = fdm_sock.send(&fgfdm, fdmsize, 0); // len = ctrls_sock.send(&fgctrls, ctrlsize, 0); } void usage( const string &argv0 ) { cout << "Usage: " << argv0 << endl; cout << "\t[ --help ]" << endl; cout << "\t[ --infile " << endl; cout << "\t[ --flight " << endl; cout << "\t[ --serial " << endl; cout << "\t[ --outfile (capture the data to a file)" << endl; cout << "\t[ --hertz ]" << endl; cout << "\t[ --host ]" << endl; cout << "\t[ --broadcast ]" << endl; cout << "\t[ --opengc-port ]" << endl; cout << "\t[ --fdm-port ]" << endl; cout << "\t[ --ctrls-port ]" << endl; cout << "\t[ --groundtrack-heading ]" << endl; cout << "\t[ --ground-speed ]" << endl; cout << "\t[ --estimate-control-deflections ]" << endl; cout << "\t[ --altitude-offset ]" << endl; cout << "\t[ --skip-seconds ]" << endl; cout << "\t[ --no-real-time ]" << endl; cout << "\t[ --ignore-checksum ]" << endl; cout << "\t[ --sg-swap ]" << endl; } int main( int argc, char **argv ) { double hertz = 60.0; string out_host = "localhost"; bool do_broadcast = false; // process command line arguments for ( int i = 1; i < argc; ++i ) { if ( strcmp( argv[i], "--help" ) == 0 ) { usage( argv[0] ); exit( 0 ); } else if ( strcmp( argv[i], "--hertz" ) == 0 ) { ++i; if ( i < argc ) { hertz = atof( argv[i] ); } else { usage( argv[0] ); exit( -1 ); } } else if ( strcmp( argv[i], "--infile" ) == 0 ) { ++i; if ( i < argc ) { infile = argv[i]; } else { usage( argv[0] ); exit( -1 ); } } else if ( strcmp( argv[i], "--flight" ) == 0 ) { ++i; if ( i < argc ) { flight_dir = argv[i]; } else { usage( argv[0] ); exit( -1 ); } } else if ( strcmp( argv[i], "--outfile" ) == 0 ) { ++i; if ( i < argc ) { outfile = argv[i]; } else { usage( argv[0] ); exit( -1 ); } } else if ( strcmp( argv[i], "--serial" ) == 0 ) { ++i; if ( i < argc ) { serialdev = argv[i]; } else { usage( argv[0] ); exit( -1 ); } } else if ( strcmp( argv[i], "--host" ) == 0 ) { ++i; if ( i < argc ) { out_host = argv[i]; } else { usage( argv[0] ); exit( -1 ); } } else if ( strcmp( argv[i], "--broadcast" ) == 0 ) { do_broadcast = true; } else if ( strcmp( argv[i], "--opengc-port" ) == 0 ) { ++i; if ( i < argc ) { opengc_port = atoi( argv[i] ); } else { usage( argv[0] ); exit( -1 ); } } else if ( strcmp( argv[i], "--fdm-port" ) == 0 ) { ++i; if ( i < argc ) { fdm_port = atoi( argv[i] ); } else { usage( argv[0] ); exit( -1 ); } } else if ( strcmp( argv[i], "--ctrls-port" ) == 0 ) { ++i; if ( i < argc ) { ctrls_port = atoi( argv[i] ); } else { usage( argv[0] ); exit( -1 ); } } else if ( strcmp (argv[i], "--groundtrack-heading" ) == 0 ) { use_ground_track_hdg = true; } else if ( strcmp (argv[i], "--ground-speed" ) == 0 ) { use_ground_speed = true; } else if (strcmp (argv[i], "--estimate-control-deflections" ) == 0) { est_controls = true; } else if ( strcmp( argv[i], "--altitude-offset" ) == 0 ) { ++i; if ( i < argc ) { alt_offset = atof( argv[i] ); } else { usage( argv[0] ); exit( -1 ); } } else if ( strcmp( argv[i], "--skip-seconds" ) == 0 ) { ++i; if ( i < argc ) { skip = atof( argv[i] ); } else { usage( argv[0] ); exit( -1 ); } } else if ( strcmp( argv[i], "--no-real-time" ) == 0 ) { run_real_time = false; } else if ( strcmp( argv[i], "--ignore-checksum" ) == 0 ) { ignore_checksum = true; } else if ( strcmp( argv[i], "--sg-swap" ) == 0 ) { sg_swap = true; } else { usage( argv[0] ); exit( -1 ); } } // Setup up outgoing network connections netInit( &argc,argv ); // We must call this before any other net stuff if ( ! opengc_sock.open( false ) ) { // open a UDP socket cout << "error opening opengc output socket" << endl; return -1; } if ( ! fdm_sock.open( false ) ) { // open a UDP socket cout << "error opening fdm output socket" << endl; return -1; } if ( ! ctrls_sock.open( false ) ) { // open a UDP socket cout << "error opening ctrls output socket" << endl; return -1; } cout << "open net channels" << endl; opengc_sock.setBlocking( false ); fdm_sock.setBlocking( false ); ctrls_sock.setBlocking( false ); cout << "blocking false" << endl; if ( do_broadcast ) { opengc_sock.setBroadcast( true ); fdm_sock.setBroadcast( true ); ctrls_sock.setBroadcast( true ); } if ( opengc_sock.connect( out_host.c_str(), opengc_port ) == -1 ) { perror("connect"); cout << "error connecting to outgoing opengc port: " << out_host << ":" << opengc_port << endl; return -1; } cout << "connected outgoing opengc socket" << endl; if ( fdm_sock.connect( out_host.c_str(), fdm_port ) == -1 ) { perror("connect"); cout << "error connecting to outgoing fdm port: " << out_host << ":" << fdm_port << endl; return -1; } cout << "connected outgoing fdm socket" << endl; if ( ctrls_sock.connect( out_host.c_str(), ctrls_port ) == -1 ) { perror("connect"); cout << "error connecting to outgoing ctrls port: " << out_host << ":" << ctrls_port << endl; return -1; } cout << "connected outgoing ctrls socket" << endl; if ( sg_swap ) { track.set_stargate_swap_mode(); } UGTelnet telnet( 5402 ); telnet.open(); if ( infile.length() || flight_dir.length() ) { if ( infile.length() ) { // Load data from a stream log data file track.load_stream( infile, ignore_checksum ); } else if ( flight_dir.length() ) { // Load data from a flight directory track.load_flight( flight_dir ); } cout << "Loaded " << track.gps_size() << " gps records." << endl; cout << "Loaded " << track.imu_size() << " imu records." << endl; cout << "Loaded " << track.nav_size() << " nav records." << endl; cout << "Loaded " << track.servo_size() << " servo records." << endl; cout << "Loaded " << track.health_size() << " health records." << endl; int size = track.imu_size(); double current_time = track.get_imupt(0).time; cout << "Track begin time is " << current_time << endl; double end_time = track.get_imupt(size-1).time; cout << "Track end time is " << end_time << endl; cout << "Duration = " << end_time - current_time << endl; if ( track.gps_size() > 0 ) { double tmp = track.get_gpspt(track.gps_size()-1).ITOW; int days = (int)(tmp / (24 * 60 * 60)); tmp -= days * 24 * 60 * 60; int hours = (int)(tmp / (60 * 60)); tmp -= hours * 60 * 60; int min = (int)(tmp / 60); tmp -= min * 60; double sec = tmp; printf("[GPS ]:ITOW= %.3f[sec] %dd %02d:%02d:%06.3f\n", tmp, days, hours, min, sec); } // advance skip seconds forward current_time += skip; frame_us = 1000000.0 / hertz; if ( frame_us < 0.0 ) { frame_us = 0.0; } SGTimeStamp start_time; start_time.stamp(); int gps_count = 0; int imu_count = 0; int nav_count = 0; int servo_count = 0; int health_count = 0; gps gps0, gps1; gps0 = gps1 = track.get_gpspt( 0 ); imu imu0, imu1; imu0 = imu1 = track.get_imupt( 0 ); nav nav0, nav1; nav0 = nav1 = track.get_navpt( 0 ); servo servo0, servo1; servo0 = servo1 = track.get_servopt( 0 ); health health0, health1; health0 = health1 = track.get_healthpt( 0 ); double last_lat = -999.9, last_lon = -999.9; printf("\n"); printf(" \n"); printf(" \n"); while ( current_time < end_time ) { // cout << "current_time = " << current_time << " end_time = " // << end_time << endl; // Advance gps pointer while ( current_time > gps1.time && gps_count < track.gps_size() - 1 ) { gps0 = gps1; ++gps_count; // cout << "count = " << count << endl; gps1 = track.get_gpspt( gps_count ); } // cout << "p0 = " << p0.get_time() << " p1 = " << p1.get_time() // << endl; // Advance imu pointer while ( current_time > imu1.time && imu_count < track.imu_size() - 1 ) { imu0 = imu1; ++imu_count; // cout << "count = " << count << endl; imu1 = track.get_imupt( imu_count ); } // cout << "pos0 = " << pos0.get_seconds() // << " pos1 = " << pos1.get_seconds() << endl; // Advance nav pointer while ( current_time > nav1.time && nav_count < track.nav_size() - 1 ) { nav0 = nav1; ++nav_count; // cout << "nav count = " << nav_count << endl; nav1 = track.get_navpt( nav_count ); } // cout << "pos0 = " << pos0.get_seconds() // << " pos1 = " << pos1.get_seconds() << endl; // Advance servo pointer while ( current_time > servo1.time && servo_count < track.servo_size() - 1 ) { servo0 = servo1; ++servo_count; // cout << "count = " << count << endl; servo1 = track.get_servopt( servo_count ); } // cout << "pos0 = " << pos0.get_seconds() // << " pos1 = " << pos1.get_seconds() << endl; // Advance health pointer while ( current_time > health1.time && health_count < track.health_size() - 1 ) { health0 = health1; ++health_count; // cout << "count = " << count << endl; health1 = track.get_healthpt( health_count ); } // cout << "pos0 = " << pos0.get_seconds() // << " pos1 = " << pos1.get_seconds() << endl; double gps_percent; if ( fabs(gps1.time - gps0.time) < 0.00001 ) { gps_percent = 0.0; } else { gps_percent = (current_time - gps0.time) / (gps1.time - gps0.time); } // cout << "Percent = " << percent << endl; double imu_percent; if ( fabs(imu1.time - imu0.time) < 0.00001 ) { imu_percent = 0.0; } else { imu_percent = (current_time - imu0.time) / (imu1.time - imu0.time); } // cout << "Percent = " << percent << endl; double nav_percent; if ( fabs(nav1.time - nav0.time) < 0.00001 ) { nav_percent = 0.0; } else { nav_percent = (current_time - nav0.time) / (nav1.time - nav0.time); } // cout << "Percent = " << percent << endl; double servo_percent; if ( fabs(servo1.time - servo0.time) < 0.00001 ) { servo_percent = 0.0; } else { servo_percent = (current_time - servo0.time) / (servo1.time - servo0.time); } // cout << "Percent = " << percent << endl; double health_percent; if ( fabs(health1.time - health0.time) < 0.00001 ) { health_percent = 0.0; } else { health_percent = (current_time - health0.time) / (health1.time - health0.time); } // cout << "Percent = " << percent << endl; gps gpspacket = UGEARInterpGPS( gps0, gps1, gps_percent ); imu imupacket = UGEARInterpIMU( imu0, imu1, imu_percent ); nav navpacket = UGEARInterpNAV( nav0, nav1, nav_percent ); servo servopacket = UGEARInterpSERVO( servo0, servo1, servo_percent ); health healthpacket = UGEARInterpHEALTH( health0, health1, health_percent ); // cout << current_time << " " << p0.lat_deg << ", " << p0.lon_deg // << endl; // cout << current_time << " " << p1.lat_deg << ", " << p1.lon_deg // << endl; // cout << (double)current_time << " " << pos.lat_deg << ", " // << pos.lon_deg << " " << att.yaw_deg << endl; if ( gpspacket.lat > -500 ) { // printf( "%.3f %.4f %.4f %.1f %.2f %.2f %.2f\n", // current_time, // navpacket.lat, navpacket.lon, navpacket.alt, // imupacket.psi, imupacket.the, imupacket.phi ); double dlat = last_lat - navpacket.lat; double dlon = last_lon - navpacket.lon; double dist = sqrt( dlat*dlat + dlon*dlon ); if ( dist > 0.01 ) { printf(" \n", navpacket.lat, navpacket.lon ); // printf(" \n"); last_lat = navpacket.lat; last_lon = navpacket.lon; } } if ( (fabs(gpspacket.lat) < 0.0001 && fabs(gpspacket.lon) < 0.0001 && fabs(gpspacket.alt) < 0.0001) ) { printf("WARNING: LOST GPS!!!\n"); gps_status = -1.0; } else { gps_status = 1.0; } send_data_udp( &gpspacket, &imupacket, &navpacket, &servopacket, &healthpacket ); if ( run_real_time ) { // Update the elapsed time. static bool first_time = true; if ( first_time ) { last_time_stamp.stamp(); first_time = false; } current_time_stamp.stamp(); /* Convert to ms */ double elapsed_us = current_time_stamp - last_time_stamp; if ( elapsed_us < (frame_us - 2000) ) { double requested_us = (frame_us - elapsed_us) - 2000 ; ulMilliSecondSleep ( (int)(requested_us / 1000.0) ) ; } current_time_stamp.stamp(); while ( current_time_stamp - last_time_stamp < frame_us ) { current_time_stamp.stamp(); } } current_time += (frame_us / 1000000.0); last_time_stamp = current_time_stamp; } printf(" \n", nav1.lat, nav1.lon ); printf(" \n"); printf(" \n"); nav0 = track.get_navpt( 0 ); nav1 = track.get_navpt( track.nav_size() - 1 ); printf(" \n", nav0.lat, nav0.lon ); printf(" \n", nav1.lat, nav1.lon ); printf("\n"); cout << "Processed " << imu_count << " entries in " << (current_time_stamp - start_time) / 1000000 << " seconds." << endl; } else if ( serialdev.length() ) { // process incoming data from the serial port int count = 0; double current_time = 0.0; double last_time = 0.0; gps gpspacket; bzero( &gpspacket, sizeof(gpspacket) ); imu imupacket; bzero( &imupacket, sizeof(imupacket) ); nav navpacket; bzero( &navpacket, sizeof(navpacket) ); servo servopacket; bzero( &servopacket, sizeof(servopacket) ); health healthpacket; bzero( &healthpacket, sizeof(healthpacket) ); double gps_time = 0.0; double imu_time = 0.0; double nav_time = 0.0; double servo_time = 0.0; double health_time = 0.0; double command_time = 0.0; double command_heartbeat = 0.0; // open the serial port device SGSerialPort uavcom( serialdev, 115200 ); if ( !uavcom.is_enabled() ) { cout << "Cannot open: " << serialdev << endl; return false; } // open up the data log file if requested if ( !outfile.length() ) { cout << "no --outfile specified, cannot capture data!" << endl; return false; } SGFile log( outfile ); if ( !log.open( SG_IO_OUT ) ) { cout << "Cannot open: " << outfile << endl; return false; } // add some test commands //command_mgr.add("ap,alt,1000"); //command_mgr.add("home,158.0,32.5"); //command_mgr.add("go,home"); //command_mgr.add("go,route"); while ( uavcom.is_enabled() ) { // cout << "looking for next message ..." << endl; int id = track.next_message( &uavcom, &log, &gpspacket, &imupacket, &navpacket, &servopacket, &healthpacket, ignore_checksum ); // cout << "message id = " << id << endl; count++; telnet.process(); if ( id == GPS_PACKET ) { if ( gpspacket.time > gps_time ) { gps_time = gpspacket.time; current_time = gps_time; } else { cout << "oops gps back in time: " << gpspacket.time << " " << gps_time << endl; } } else if ( id == IMU_PACKET ) { if ( imupacket.time > imu_time ) { imu_time = imupacket.time; current_time = imu_time; } else { cout << "oops imu back in time: " << imupacket.time << " " << imu_time << endl; } } else if ( id == NAV_PACKET ) { if ( navpacket.time > nav_time ) { nav_time = navpacket.time; current_time = nav_time; } else { cout << "oops nav back in time: " << navpacket.time << " " << nav_time << endl; } } else if ( id == SERVO_PACKET ) { if ( servopacket.time > servo_time ) { servo_time = servopacket.time; current_time = servo_time; } else { cout << "oops servo back in time: " << servopacket.time << " " << servo_time << endl; } } else if ( id == HEALTH_PACKET ) { if ( healthpacket.time > health_time ) { health_time = healthpacket.time; current_time = health_time; printf("Received a health packet, sequence: %d\n", (int)healthpacket.command_sequence); command_mgr.update_cmd_sequence(healthpacket.command_sequence); } else { cout << "oops health back in time: " << healthpacket.time << " " << health_time << endl; } } if ( (current_time > gps_time + 2) || (fabs(gpspacket.lat) < 0.0001 && fabs(gpspacket.lon) < 0.0001 && fabs(gpspacket.alt) < 0.0001) ) { printf("WARNING: LOST GPS!!!\n"); gps_status = -1.0; } else { gps_status = 1.0; } // Generate a ground station heart beat every 4 seconds if ( current_time >= command_heartbeat + 4 ) { command_mgr.add("hb"); command_heartbeat = current_time; } // Command update @ 1hz if ( current_time >= command_time + 1 ) { command_mgr.update(&uavcom); command_time = current_time; } // Relay data on to FlightGear and LFSTech Glass if ( current_time >= last_time + (1/hertz) ) { // if ( gpspacket.lat > -500 ) { int londeg = (int)navpacket.lon; // double lonmin = fabs(navpacket.lon - londeg); int latdeg = (int)navpacket.lat; // double latmin = fabs(navpacket.lat - latdeg); char londir = 'E'; if ( londeg < 0 ) londir = 'W'; char latdir = 'N'; if ( latdeg < 0 ) latdir = 'S'; londeg = abs(londeg); latdeg = abs(latdeg); /*printf( "%.2f %c%02d:%.4f %c%03d:%.4f %.1f %.2f %.2f %.2f\n", current_time, latdir, latdeg, latmin, londir, londeg, lonmin, navpacket.alt, imupacket.phi*SGD_RADIANS_TO_DEGREES, imupacket.the*SGD_RADIANS_TO_DEGREES, imupacket.psi*SGD_RADIANS_TO_DEGREES ); */ // } last_time = current_time; send_data_udp( &gpspacket, &imupacket, &navpacket, &servopacket, &healthpacket ); } } } return 0; }