// obj.cxx -- routines to handle "sorta" WaveFront .obj format files. // // Written by Curtis Olson, started October 1997. // // Copyright (C) 1997 Curtis L. Olson - curt@infoplane.com // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. // // $Id$ #ifdef HAVE_CONFIG_H # include #endif #ifdef FG_MATH_EXCEPTION_CLASH # include #endif #include #include // #if defined ( __sun__ ) // extern "C" void *memmove(void *, const void *, size_t); // extern "C" void *memset(void *, int, size_t); // #endif #include #include #include STL_STRING #include // STL #include // STL #include // isdigit() #include #include #include #include #include #include #include #include #include #include
#include
#include #include "matlib.hxx" #include "obj.hxx" FG_USING_STD(string); FG_USING_STD(vector); typedef vector < int > int_list; typedef int_list::iterator int_list_iterator; typedef int_list::const_iterator int_point_list_iterator; static double normals[FG_MAX_NODES][3]; static double tex_coords[FG_MAX_NODES*3][3]; #define FG_TEX_CONSTANT 69.0 // Calculate texture coordinates for a given point. static Point3D local_calc_tex_coords(const Point3D& node, const Point3D& ref) { Point3D cp; Point3D pp; // double tmplon, tmplat; // cout << "-> " << node[0] << " " << node[1] << " " << node[2] << endl; // cout << "-> " << ref.x() << " " << ref.y() << " " << ref.z() << endl; cp = Point3D( node[0] + ref.x(), node[1] + ref.y(), node[2] + ref.z() ); pp = sgCartToPolar3d(cp); // tmplon = pp.lon() * RAD_TO_DEG; // tmplat = pp.lat() * RAD_TO_DEG; // cout << tmplon << " " << tmplat << endl; pp.setx( fmod(RAD_TO_DEG * FG_TEX_CONSTANT * pp.x(), 11.0) ); pp.sety( fmod(RAD_TO_DEG * FG_TEX_CONSTANT * pp.y(), 11.0) ); if ( pp.x() < 0.0 ) { pp.setx( pp.x() + 11.0 ); } if ( pp.y() < 0.0 ) { pp.sety( pp.y() + 11.0 ); } // cout << pp << endl; return(pp); } // Generate a generic ocean tile on the fly ssgBranch *fgGenTile( const string& path, FGTileEntry *t) { FGNewMat *newmat; ssgSimpleState *state = NULL; ssgBranch *tile = new ssgBranch () ; tile -> setName ( (char *)path.c_str() ) ; double tex_width = 1000.0; // double tex_height; // find Ocean material in the properties list newmat = material_lib.find( "Ocean" ); if ( newmat != NULL ) { // set the texture width and height values for this // material tex_width = newmat->get_xsize(); // tex_height = newmat->get_ysize(); // set ssgState state = newmat->get_state(); } else { FG_LOG( FG_TERRAIN, FG_ALERT, "Ack! unknown usemtl name = " << "Ocean" << " in " << path ); } // Calculate center point SGBucket b = t->tile_bucket; double clon = b.get_center_lon(); double clat = b.get_center_lat(); double height = b.get_height(); double width = b.get_width(); Point3D center = sgGeodToCart(Point3D(clon*DEG_TO_RAD,clat*DEG_TO_RAD,0.0)); t->center = center; // cout << "center = " << center << endl;; // Caculate corner vertices Point3D geod[4]; geod[0] = Point3D( clon - width/2.0, clat - height/2.0, 0.0 ); geod[1] = Point3D( clon + width/2.0, clat - height/2.0, 0.0 ); geod[2] = Point3D( clon + width/2.0, clat + height/2.0, 0.0 ); geod[3] = Point3D( clon - width/2.0, clat + height/2.0, 0.0 ); Point3D rad[4]; int i; for ( i = 0; i < 4; ++i ) { rad[i] = Point3D( geod[i].x() * DEG_TO_RAD, geod[i].y() * DEG_TO_RAD, geod[i].z() ); } Point3D cart[4], rel[4]; t->nodes.clear(); for ( i = 0; i < 4; ++i ) { cart[i] = sgGeodToCart(rad[i]); rel[i] = cart[i] - center; t->nodes.push_back( rel[i] ); // cout << "corner " << i << " = " << cart[i] << endl; } t->ncount = 4; // Calculate bounding radius t->bounding_radius = center.distance3D( cart[0] ); // cout << "bounding radius = " << t->bounding_radius << endl; // Calculate normals Point3D normals[4]; for ( i = 0; i < 4; ++i ) { normals[i] = cart[i]; double length = normals[i].distance3D( Point3D(0.0) ); normals[i] /= length; // cout << "normal = " << normals[i] << endl; } // Calculate texture coordinates point_list geod_nodes; geod_nodes.clear(); for ( i = 0; i < 4; ++i ) { geod_nodes.push_back( geod[i] ); } int_list rectangle; rectangle.clear(); for ( i = 0; i < 4; ++i ) { rectangle.push_back( i ); } point_list texs = calc_tex_coords( b, geod_nodes, rectangle, 1000.0 / tex_width ); // Allocate ssg structure ssgVertexArray *vl = new ssgVertexArray( 4 ); ssgNormalArray *nl = new ssgNormalArray( 4 ); ssgTexCoordArray *tl = new ssgTexCoordArray( 4 ); ssgColourArray *cl = new ssgColourArray( 1 ); sgVec4 color; sgSetVec4( color, 1.0, 1.0, 1.0, 1.0 ); cl->add( color ); // sgVec3 *vtlist = new sgVec3 [ 4 ]; // t->vec3_ptrs.push_back( vtlist ); // sgVec3 *vnlist = new sgVec3 [ 4 ]; // t->vec3_ptrs.push_back( vnlist ); // sgVec2 *tclist = new sgVec2 [ 4 ]; // t->vec2_ptrs.push_back( tclist ); sgVec2 tmp2; sgVec3 tmp3; for ( i = 0; i < 4; ++i ) { sgSetVec3( tmp3, rel[i].x(), rel[i].y(), rel[i].z() ); vl->add( tmp3 ); sgSetVec3( tmp3, normals[i].x(), normals[i].y(), normals[i].z() ); nl->add( tmp3 ); sgSetVec2( tmp2, texs[i].x(), texs[i].y()); tl->add( tmp2 ); } ssgLeaf *leaf = new ssgVtxTable ( GL_TRIANGLE_FAN, vl, nl, tl, cl ); leaf->setState( state ); tile->addKid( leaf ); return tile; } static float fgTriArea( sgVec3 p0, sgVec3 p1, sgVec3 p2 ) { /* From comp.graph.algorithms FAQ 2A(P) = abs(N.(sum_{i=0}^{n-1}(v_i x v_{i+1}))) */ sgVec3 sum; sgZeroVec3( sum ); sgVec3 norm; sgMakeNormal( norm, p0, p1, p2 ); float *vv[3]; vv[0] = p0; vv[1] = p1; vv[2] = p2; for( int i=0; i<3; i++ ) { int ii = (i+1) % 3; sum[0] += (vv[i][1] * vv[ii][2] - vv[i][2] * vv[ii][1]) ; sum[1] += (vv[i][2] * vv[ii][0] - vv[i][0] * vv[ii][2]) ; sum[2] += (vv[i][0] * vv[ii][1] - vv[i][1] * vv[ii][0]) ; } return( sgAbs(sgScalarProductVec3( norm, sum )) * SG_HALF ); } static void random_pt_inside_tri( float *res, float *n1, float *n2, float *n3 ) { sgVec3 p1, p2, p3; double a = sg_random(); double b = sg_random(); if ( a + b > 1.0 ) { a = 1.0 - a; b = 1.0 - b; } double c = 1 - a - b; sgScaleVec3( p1, n1, a ); sgScaleVec3( p2, n2, b ); sgScaleVec3( p3, n3, c ); sgAddVec3( res, p1, p2 ); sgAddVec3( res, p3 ); } static void gen_random_surface_points( ssgLeaf *leaf, ssgVertexArray *lights, double factor ) { int num = leaf->getNumTriangles(); if ( num > 0 ) { short int n1, n2, n3; float *p1, *p2, *p3; sgVec3 result; // generate a repeatable random seed p1 = leaf->getVertex( 0 ); unsigned int *seed = (unsigned int *)p1; sg_srandom( *seed ); for ( int i = 0; i < num; ++i ) { leaf->getTriangle( i, &n1, &n2, &n3 ); p1 = leaf->getVertex(n1); p2 = leaf->getVertex(n2); p3 = leaf->getVertex(n3); double area = fgTriArea( p1, p2, p3 ); double num = area / factor; // generate a light point for each unit of area while ( num > 1.0 ) { random_pt_inside_tri( result, p1, p2, p3 ); lights->add( result ); num -= 1.0; } // for partial units of area, use a zombie door method to // create the proper random chance of a light being created // for this triangle if ( num > 0.0 ) { if ( sg_random() <= num ) { // a zombie made it through our door random_pt_inside_tri( result, p1, p2, p3 ); lights->add( result ); } } } } } // Load an Ascii obj file static ssgBranch *fgAsciiObjLoad( const string& path, FGTileEntry *t, ssgVertexArray *lights, const bool is_base) { FGNewMat *newmat = NULL; string material; float coverage = -1; Point3D pp; // sgVec3 approx_normal; // double normal[3], scale = 0.0; // double x, y, z, xmax, xmin, ymax, ymin, zmax, zmin; // GLfloat sgenparams[] = { 1.0, 0.0, 0.0, 0.0 }; // GLint display_list = 0; int shading; bool in_faces = false; int vncount, vtcount; int n1 = 0, n2 = 0, n3 = 0; int tex; // int last1 = 0, last2 = 0; bool odd = false; point_list nodes; Point3D node; Point3D center; double scenery_version = 0.0; double tex_width = 1000.0, tex_height = 1000.0; bool shared_done = false; int_list fan_vertices; int_list fan_tex_coords; int i; ssgSimpleState *state = NULL; sgVec3 *vtlist, *vnlist; sgVec2 *tclist; ssgBranch *tile = new ssgBranch () ; tile -> setName ( (char *)path.c_str() ) ; // Attempt to open "path.gz" or "path" fg_gzifstream in( path ); if ( ! in.is_open() ) { FG_LOG( FG_TERRAIN, FG_DEBUG, "Cannot open file: " << path ); FG_LOG( FG_TERRAIN, FG_DEBUG, "default to ocean tile: " << path ); return NULL; } shading = fgGetBool("/sim/rendering/shading"); if ( is_base ) { t->ncount = 0; } vncount = 0; vtcount = 0; if ( is_base ) { t->bounding_radius = 0.0; } center = t->center; StopWatch stopwatch; stopwatch.start(); // ignore initial comments and blank lines. (priming the pump) // in >> skipcomment; // string line; string token; char c; #ifdef __MWERKS__ while ( in.get(c) && c != '\0' ) { in.putback(c); #else while ( ! in.eof() ) { #endif #if defined( macintosh ) || defined( _MSC_VER ) in >> ::skipws; #else in >> skipws; #endif if ( in.get( c ) && c == '#' ) { // process a comment line // getline( in, line ); // cout << "comment = " << line << endl; in >> token; if ( token == "Version" ) { // read scenery versions number in >> scenery_version; // cout << "scenery_version = " << scenery_version << endl; if ( scenery_version > 0.4 ) { FG_LOG( FG_TERRAIN, FG_ALERT, "\nYou are attempting to load a tile format that\n" << "is newer than this version of flightgear can\n" << "handle. You should upgrade your copy of\n" << "FlightGear to the newest version. For\n" << "details, please see:\n" << "\n http://www.flightgear.org\n" ); exit(-1); } } else if ( token == "gbs" ) { // reference point (center offset) if ( is_base ) { in >> t->center >> t->bounding_radius; } else { Point3D junk1; double junk2; in >> junk1 >> junk2; } center = t->center; // cout << "center = " << center // << " radius = " << t->bounding_radius << endl; } else if ( token == "bs" ) { // reference point (center offset) // (skip past this) Point3D junk1; double junk2; in >> junk1 >> junk2; } else if ( token == "usemtl" ) { // material property specification // if first usemtl with shared_done = false, then set // shared_done true and build the ssg shared lists if ( ! shared_done ) { // sanity check if ( (int)nodes.size() != vncount ) { FG_LOG( FG_TERRAIN, FG_ALERT, "Tile has mismatched nodes = " << nodes.size() << " and normals = " << vncount << " : " << path ); // exit(-1); } shared_done = true; vtlist = new sgVec3 [ nodes.size() ]; t->vec3_ptrs.push_back( vtlist ); vnlist = new sgVec3 [ vncount ]; t->vec3_ptrs.push_back( vnlist ); tclist = new sgVec2 [ vtcount ]; t->vec2_ptrs.push_back( tclist ); for ( i = 0; i < (int)nodes.size(); ++i ) { sgSetVec3( vtlist[i], nodes[i][0], nodes[i][1], nodes[i][2] ); } for ( i = 0; i < vncount; ++i ) { sgSetVec3( vnlist[i], normals[i][0], normals[i][1], normals[i][2] ); } for ( i = 0; i < vtcount; ++i ) { sgSetVec2( tclist[i], tex_coords[i][0], tex_coords[i][1] ); } } // display_list = xglGenLists(1); // xglNewList(display_list, GL_COMPILE); // printf("xglGenLists(); xglNewList();\n"); in_faces = false; // scan the material line in >> material; // find this material in the properties list newmat = material_lib.find( material ); if ( newmat == NULL ) { // see if this is an on the fly texture string file = path; int pos = file.rfind( "/" ); file = file.substr( 0, pos ); cout << "current file = " << file << endl; file += "/"; file += material; cout << "current file = " << file << endl; if ( ! material_lib.add_item( file ) ) { FG_LOG( FG_TERRAIN, FG_ALERT, "Ack! unknown usemtl name = " << material << " in " << path ); } else { // locate our newly created material newmat = material_lib.find( material ); if ( newmat == NULL ) { FG_LOG( FG_TERRAIN, FG_ALERT, "Ack! bad on the fly materia create = " << material << " in " << path ); } } } if ( newmat != NULL ) { // set the texture width and height values for this // material tex_width = newmat->get_xsize(); tex_height = newmat->get_ysize(); state = newmat->get_state(); coverage = newmat->get_light_coverage(); // cout << "(w) = " << tex_width << " (h) = " // << tex_width << endl; } else { coverage = -1; } } else { // unknown comment, just gobble the input until the // end of line in >> skipeol; } } else { in.putback( c ); in >> token; // cout << "token = " << token << endl; if ( token == "vn" ) { // vertex normal if ( vncount < FG_MAX_NODES ) { in >> normals[vncount][0] >> normals[vncount][1] >> normals[vncount][2]; vncount++; } else { FG_LOG( FG_TERRAIN, FG_ALERT, "Read too many vertex normals in " << path << " ... dying :-(" ); exit(-1); } } else if ( token == "vt" ) { // vertex texture coordinate if ( vtcount < FG_MAX_NODES*3 ) { in >> tex_coords[vtcount][0] >> tex_coords[vtcount][1]; vtcount++; } else { FG_LOG( FG_TERRAIN, FG_ALERT, "Read too many vertex texture coords in " << path << " ... dying :-(" ); exit(-1); } } else if ( token == "v" ) { // node (vertex) if ( t->ncount < FG_MAX_NODES ) { /* in >> nodes[t->ncount][0] >> nodes[t->ncount][1] >> nodes[t->ncount][2]; */ in >> node; nodes.push_back(node); if ( is_base ) { t->ncount++; } } else { FG_LOG( FG_TERRAIN, FG_ALERT, "Read too many nodes in " << path << " ... dying :-("); exit(-1); } } else if ( (token == "tf") || (token == "ts") || (token == "f") ) { // triangle fan, strip, or individual face // FG_LOG( FG_TERRAIN, FG_INFO, "new fan or strip"); fan_vertices.clear(); fan_tex_coords.clear(); odd = true; // xglBegin(GL_TRIANGLE_FAN); in >> n1; fan_vertices.push_back( n1 ); // xglNormal3dv(normals[n1]); if ( in.get( c ) && c == '/' ) { in >> tex; fan_tex_coords.push_back( tex ); if ( scenery_version >= 0.4 ) { if ( tex_width > 0 ) { tclist[tex][0] *= (1000.0 / tex_width); } if ( tex_height > 0 ) { tclist[tex][1] *= (1000.0 / tex_height); } } pp.setx( tex_coords[tex][0] * (1000.0 / tex_width) ); pp.sety( tex_coords[tex][1] * (1000.0 / tex_height) ); } else { in.putback( c ); pp = local_calc_tex_coords(nodes[n1], center); } // xglTexCoord2f(pp.x(), pp.y()); // xglVertex3dv(nodes[n1].get_n()); in >> n2; fan_vertices.push_back( n2 ); // xglNormal3dv(normals[n2]); if ( in.get( c ) && c == '/' ) { in >> tex; fan_tex_coords.push_back( tex ); if ( scenery_version >= 0.4 ) { if ( tex_width > 0 ) { tclist[tex][0] *= (1000.0 / tex_width); } if ( tex_height > 0 ) { tclist[tex][1] *= (1000.0 / tex_height); } } pp.setx( tex_coords[tex][0] * (1000.0 / tex_width) ); pp.sety( tex_coords[tex][1] * (1000.0 / tex_height) ); } else { in.putback( c ); pp = local_calc_tex_coords(nodes[n2], center); } // xglTexCoord2f(pp.x(), pp.y()); // xglVertex3dv(nodes[n2].get_n()); // read all subsequent numbers until next thing isn't a number while ( true ) { #if defined( macintosh ) || defined( _MSC_VER ) in >> ::skipws; #else in >> skipws; #endif char c; in.get(c); in.putback(c); if ( ! isdigit(c) || in.eof() ) { break; } in >> n3; fan_vertices.push_back( n3 ); // cout << " triangle = " // << n1 << "," << n2 << "," << n3 // << endl; // xglNormal3dv(normals[n3]); if ( in.get( c ) && c == '/' ) { in >> tex; fan_tex_coords.push_back( tex ); if ( scenery_version >= 0.4 ) { if ( tex_width > 0 ) { tclist[tex][0] *= (1000.0 / tex_width); } if ( tex_height > 0 ) { tclist[tex][1] *= (1000.0 / tex_height); } } pp.setx( tex_coords[tex][0] * (1000.0 / tex_width) ); pp.sety( tex_coords[tex][1] * (1000.0 / tex_height) ); } else { in.putback( c ); pp = local_calc_tex_coords(nodes[n3], center); } // xglTexCoord2f(pp.x(), pp.y()); // xglVertex3dv(nodes[n3].get_n()); if ( (token == "tf") || (token == "f") ) { // triangle fan n2 = n3; } else { // triangle strip odd = !odd; n1 = n2; n2 = n3; } } // xglEnd(); // build the ssg entity int size = (int)fan_vertices.size(); ssgVertexArray *vl = new ssgVertexArray( size ); ssgNormalArray *nl = new ssgNormalArray( size ); ssgTexCoordArray *tl = new ssgTexCoordArray( size ); ssgColourArray *cl = new ssgColourArray( 1 ); sgVec4 color; sgSetVec4( color, 1.0, 1.0, 1.0, 1.0 ); cl->add( color ); sgVec2 tmp2; sgVec3 tmp3; for ( i = 0; i < size; ++i ) { sgCopyVec3( tmp3, vtlist[ fan_vertices[i] ] ); vl -> add( tmp3 ); sgCopyVec3( tmp3, vnlist[ fan_vertices[i] ] ); nl -> add( tmp3 ); sgCopyVec2( tmp2, tclist[ fan_tex_coords[i] ] ); tl -> add( tmp2 ); } ssgLeaf *leaf = NULL; if ( token == "tf" ) { // triangle fan leaf = new ssgVtxTable ( GL_TRIANGLE_FAN, vl, nl, tl, cl ); } else if ( token == "ts" ) { // triangle strip leaf = new ssgVtxTable ( GL_TRIANGLE_STRIP, vl, nl, tl, cl ); } else if ( token == "f" ) { // triangle leaf = new ssgVtxTable ( GL_TRIANGLES, vl, nl, tl, cl ); } // leaf->makeDList(); leaf->setState( state ); tile->addKid( leaf ); if ( is_base ) { if ( coverage > 0.0 ) { if ( coverage < 10000.0 ) { FG_LOG(FG_INPUT, FG_ALERT, "Light coverage is " << coverage << ", pushing up to 10000"); coverage = 10000; } gen_random_surface_points(leaf, lights, coverage); } } } else { FG_LOG( FG_TERRAIN, FG_WARN, "Unknown token in " << path << " = " << token ); } // eat white space before start of while loop so if we are // done with useful input it is noticed before hand. #if defined( macintosh ) || defined( _MSC_VER ) in >> ::skipws; #else in >> skipws; #endif } } if ( is_base ) { t->nodes = nodes; } stopwatch.stop(); FG_LOG( FG_TERRAIN, FG_DEBUG, "Loaded " << path << " in " << stopwatch.elapsedSeconds() << " seconds" ); return tile; } static ssgLeaf *gen_leaf( const string& path, const GLenum ty, const string& material, const point_list& nodes, const point_list& normals, const point_list& texcoords, const int_list node_index, const int_list& tex_index, const bool calc_lights, ssgVertexArray *lights ) { double tex_width = 1000.0, tex_height = 1000.0; ssgSimpleState *state = NULL; float coverage = -1; int size = node_index.size(); ssgVertexArray *vl = new ssgVertexArray( size ); ssgNormalArray *nl = new ssgNormalArray( size ); ssgTexCoordArray *tl = new ssgTexCoordArray( size ); ssgColourArray *cl = new ssgColourArray( 1 ); sgVec4 color; sgSetVec4( color, 1.0, 1.0, 1.0, 1.0 ); cl->add( color ); sgVec2 tmp2; sgVec3 tmp3; int i; for ( i = 0; i < size; ++i ) { Point3D node = nodes[ node_index[i] ]; sgSetVec3( tmp3, node[0], node[1], node[2] ); vl -> add( tmp3 ); Point3D normal = normals[ node_index[i] ]; sgSetVec3( tmp3, normal[0], normal[1], normal[2] ); nl -> add( tmp3 ); Point3D texcoord = texcoords[ tex_index[i] ]; sgSetVec2( tmp2, texcoord[0], texcoord[1] ); tl -> add( tmp2 ); } // cout << "before leaf create" << endl; ssgLeaf *leaf = new ssgVtxTable ( ty, vl, nl, tl, cl ); // cout << "after leaf create" << endl; // lookup the state record // cout << "looking up material = " << endl; // cout << material << endl; // cout << "'" << endl; FGNewMat *newmat = material_lib.find( material ); if ( newmat == NULL ) { // see if this is an on the fly texture string file = path; int pos = file.rfind( "/" ); file = file.substr( 0, pos ); cout << "current file = " << file << endl; file += "/"; file += material; cout << "current file = " << file << endl; if ( ! material_lib.add_item( file ) ) { FG_LOG( FG_TERRAIN, FG_ALERT, "Ack! unknown usemtl name = " << material << " in " << path ); } else { // locate our newly created material newmat = material_lib.find( material ); if ( newmat == NULL ) { FG_LOG( FG_TERRAIN, FG_ALERT, "Ack! bad on the fly materia create = " << material << " in " << path ); } } } if ( newmat != NULL ) { // set the texture width and height values for this // material tex_width = newmat->get_xsize(); tex_height = newmat->get_ysize(); state = newmat->get_state(); coverage = newmat->get_light_coverage(); // cout << "(w) = " << tex_width << " (h) = " // << tex_width << endl; } else { coverage = -1; } leaf->setState( state ); if ( calc_lights ) { if ( coverage > 0.0 ) { if ( coverage < 10000.0 ) { FG_LOG(FG_INPUT, FG_ALERT, "Light coverage is " << coverage << ", pushing up to 10000"); coverage = 10000; } gen_random_surface_points(leaf, lights, coverage); } } return leaf; } // Load an Binary obj file static ssgBranch *fgBinObjLoad( const string& path, FGTileEntry *t, ssgVertexArray *lights, const bool is_base) { int i; SGBinObject obj; bool result = obj.read_bin( path ); if ( !result ) { return NULL; } // cout << "fans size = " << obj.get_fans_v().size() // << " fan_mats size = " << obj.get_fan_materials().size() << endl; ssgBranch *object = new ssgBranch(); object->setName( (char *)path.c_str() ); if ( is_base && t != NULL ) { // reference point (center offset/bounding sphere) t->center = obj.get_gbs_center(); t->bounding_radius = obj.get_gbs_radius(); } point_list nodes = obj.get_wgs84_nodes(); point_list normals = obj.get_normals(); point_list texcoords = obj.get_texcoords(); string material; int_list vertex_index; int_list tex_index; // generate triangles string_list tri_materials = obj.get_tri_materials(); group_list tris_v = obj.get_tris_v(); group_list tris_tc = obj.get_tris_tc(); for ( i = 0; i < (int)tris_v.size(); ++i ) { material = tri_materials[i]; vertex_index = tris_v[i]; tex_index = tris_tc[i]; ssgLeaf *leaf = gen_leaf( path, GL_TRIANGLES, material, nodes, normals, texcoords, vertex_index, tex_index, is_base, lights ); object->addKid( leaf ); } // generate strips string_list strip_materials = obj.get_strip_materials(); group_list strips_v = obj.get_strips_v(); group_list strips_tc = obj.get_strips_tc(); for ( i = 0; i < (int)strips_v.size(); ++i ) { material = strip_materials[i]; vertex_index = strips_v[i]; tex_index = strips_tc[i]; ssgLeaf *leaf = gen_leaf( path, GL_TRIANGLE_STRIP, material, nodes, normals, texcoords, vertex_index, tex_index, is_base, lights ); object->addKid( leaf ); } // generate fans string_list fan_materials = obj.get_fan_materials(); group_list fans_v = obj.get_fans_v(); group_list fans_tc = obj.get_fans_tc(); for ( i = 0; i < (int)fans_v.size(); ++i ) { material = fan_materials[i]; vertex_index = fans_v[i]; tex_index = fans_tc[i]; ssgLeaf *leaf = gen_leaf( path, GL_TRIANGLE_FAN, material, nodes, normals, texcoords, vertex_index, tex_index, is_base, lights ); object->addKid( leaf ); } return object; } // Load an obj file ssgBranch *fgObjLoad( const string& path, FGTileEntry *t, ssgVertexArray *lights, const bool is_base) { ssgBranch *result = NULL; // try loading binary format result = fgBinObjLoad( path, t, lights, is_base ); if ( result == NULL ) { // next try the older ascii format result = fgAsciiObjLoad( path, t, lights, is_base ); if ( result == NULL ) { // default to an ocean tile result = fgGenTile( path, t ); } } return result; }